K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

5 tháng 9 2017

cậu Áp dụng bđt cô si để chứng minh \(\left(x+y\right)^2\ge4xy\)

Áp dụng ta có \(\left[a+\left(b+c\right)\right]^2\ge4a\left(b+c\right)\)

=> \(1\ge4a\left(b+c\right)\)(1)

Áp dụng lần nữa ta có 

\(\left(b+c\right)^2\ge4bc\) (2 )

từ (1),(2), nhận 2 vế ta có 

\(\left(b+c\right)^2\ge16\left(b+c\right)abc\)

=> \(b+c\ge16abc\) (ĐPCM) 

dấu = tự tìm nhé

21 tháng 1 2017

Chưa cho a,b,c > 0 sao chia 2 vế cho abc đuojwc

21 tháng 1 2017

Chia \(abc\) hai về được BĐT tương đương \(\frac{1}{ab}+\frac{1}{ac}\ge16\)

Áp dụng BĐT \(\frac{1}{x}+\frac{1}{y}\ge\frac{4}{x+y}\) được: \(\frac{1}{ab}+\frac{1}{ac}\ge\frac{4}{ab+ac}=\frac{4}{a\left(b+c\right)}\)

Dưới mẫu bạn áp dụng BĐT \(a\left(b+c\right)\le\frac{\left(a+b+c\right)^2}{4}=\frac{1}{4}\) thì \(\frac{1}{ab}+\frac{1}{ac}\ge16\).

BĐT được chứng minh.

26 tháng 10 2018

Ta có: b + c = (b + c).(a + b + c)^2 (vì a + b + c = 1)
Ta có [ (a + b) + c ]^2 >= 4(a + b)c (vì (x + y)^2 >= 4xy )
<=> (b + c).(a + b + c)^2 >= 4(a + b)^2.c
lại có (a + b)^2 >= 4ab => 4(a + b)^2.c >= 16abc (đpcm)
bạn tự tìm dấu '=' nha

23 tháng 3 2017

Ta có \(b+c=\left(b+c\right).\left(a+b+c\right)^2\) (vì a+b+c=0)

\(\left(a+b+c\right)^2=\left[\left(b+c\right)+a\right]^2\ge4\left(b+c\right).a\)

Do đó \(\left(b+c\right).\left(a+b+c\right)^2\ge4\left(b+c\right)^2.a\ge4.4bc.a=16abc\)vì (b+c)^2>=4bc

dấu = xảy ra thì tự tìm nha bạn

2 tháng 8 2019

a+b+c = 1 mà

Áp dụng BĐT cô si với hai số không âm, Ta có: 

\(\left(a+b+c\right)^2=1\ge4a\left(b+c\right)\)

\(\Leftrightarrow b+c\ge4a\left(b+c\right)^2\)

Mà \(\left(b+c\right)^2\ge4bc\forall b,c\ge0\)

\(\Rightarrow b+c\ge16abc\)

Dấu "=" xảy ra khi: 

\(\hept{\begin{cases}a+b+c=1\\b=c\\a=b+c\end{cases}}\Rightarrow\hept{\begin{cases}a=\frac{1}{2}\\b=c=\frac{1}{4}\end{cases}}\)

\(\Leftrightarrow\left(a+b+c\right)\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)\ge9\)

\(\Leftrightarrow3+\left(\frac{a}{b}+\frac{b}{a}\right)+\left(\frac{b}{c}+\frac{c}{b}\right)+\left(\frac{c}{a}+\frac{a}{c}\right)\ge9\)

\(\Leftrightarrow\left(\frac{a}{b}+\frac{b}{a}\right)+\left(\frac{b}{c}+\frac{c}{b}\right)+\left(\frac{c}{a}+\frac{a}{c}\right)\ge6\)

Áp dụng BĐT Cô si với 2 số dương ta có: 

\(\frac{a}{b}+\frac{b}{a}\ge2,\frac{b}{c}+\frac{c}{b}\ge2,\frac{c}{a}+\frac{a}{c}\ge2\)

\(\Leftrightarrow\left(\frac{a}{b}+\frac{b}{a}\right)+\left(\frac{b}{c}+\frac{c}{b}\right)+\left(\frac{c}{a}+\frac{a}{c}\right)\ge6\)(đúng) 

\(\Leftrightarrow\left(a+b+c\right)\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)\ge9\)

\(\Leftrightarrow\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\ge9\)(do a+b+c=1)

9 tháng 8 2017

mịa c đâu ra vậy

9 tháng 8 2017

Ta có :

\(a-\sqrt{a}+\frac{1}{4}=\left(\sqrt{a}-\frac{1}{2}\right)^2\ge0\forall a\ge0\Rightarrow a+\frac{1}{4}\ge\sqrt{a}\)

\(b-\sqrt{b}+\frac{1}{4}=\left(\sqrt{b}-\frac{1}{2}\right)^2\ge0\forall b\ge0\Rightarrow b+\frac{1}{4}\ge\sqrt{b}\)

\(\Rightarrow a+\frac{1}{4}+b+\frac{1}{4}\ge\sqrt{a}+\sqrt{b}\)

\(\Rightarrow a+b+\frac{1}{2}\ge\sqrt{a}+\sqrt{b}\)(đpcm)

9 tháng 11 2018

Câu hỏi của Đỗ Minh Quang - Toán lớp 9 - Học toán với OnlineMath

Em xem cách làm ở link này nhé!

9 tháng 11 2018

Áp dụng bất đẳng thức coosi ta được:

\(a+b+c\ge2\sqrt{a\left(b+c\right)}\Rightarrow1\ge4a\left(b+c\right)\ge4a\left(b+c\right)^2\)

Mà \(\left(b+c\right)^2\ge4bc\Rightarrow b+c\ge16abc\)

Dấu "=" xảy ra khi \(a=b+c\) và \(b=c\) và \(a+b+c=1\Rightarrow a=\frac{1}{2};b=c=\frac{1}{4}\)

26 tháng 8 2020

Bài toán số 41 có 2 cách làm, tôi làm cách thứ 2

Đặt \(Q=\sqrt{\frac{x}{y+z}}+\sqrt{\frac{y}{x+z}}+\sqrt{\frac{z}{x+y}}\)\(\Rightarrow Q^2=\frac{x}{y+z}+\frac{y}{x+z}+\frac{z}{x+y}+2\left(\sqrt{\frac{xy}{\left(y+z\right)\left(x+z\right)}}+\sqrt{\frac{yz}{\left(x+z\right)\left(y+z\right)}}+\sqrt{\frac{xz}{\left(x+y\right)\left(y+z\right)}}\right)\)ta thấy rằng \(\frac{x}{y+z}+\frac{y}{x+z}+\frac{z}{x+y}=\frac{1}{4}\left(\frac{x}{y+z}+\frac{y}{x+z}+\frac{z}{x+y}\right)\left(xy+yz+zx\right)\)

\(=\frac{x^2+y^2+z^2}{4}+\frac{xyz}{4}\left(\frac{1}{x+y}+\frac{1}{y+z}+\frac{1}{z+x}\right)\ge\frac{x^2+y^2+z^2}{4}\)

Áp dụng bất đẳng thức AM-GM ta có \(\sqrt{\frac{yx}{\left(z+x\right)\left(x+y\right)}}\ge\frac{2yx}{2\sqrt{\left(xy+yz\right)\left(yz+yx\right)}}\ge\frac{2xy}{2xy+yz+xz}\ge\frac{2xy}{2\left(xy+yz+zx\right)}=\frac{xy}{xy+yz+zx}\)

Tương tự ta có \(\hept{\begin{cases}\sqrt{\frac{yz}{\left(z+x\right)\left(z+y\right)}}\ge\frac{yz}{xy+yz+zx}\\\sqrt{\frac{xz}{\left(x+y\right)\left(y+z\right)}}\ge\frac{xz}{xy+yz+zx}\end{cases}}\)

\(\Rightarrow\sqrt{\frac{xy}{\left(y+z\right)\left(z+x\right)}}+\sqrt{\frac{yz}{\left(z+x\right)\left(x+y\right)}}+\sqrt{\frac{zx}{\left(x+y\right)\left(y+z\right)}}\ge1\)nên \(Q\ge\sqrt{\frac{x^2+y^2+z^2}{4}+2}\)

\(\Rightarrow Q\ge\sqrt{\frac{x^2+y^2+z^2}{2}+4}+\frac{4}{\sqrt{x^2+y^2+z^2}}\)

Đặt \(t=\sqrt{x^2+y^2+z^2}\Rightarrow t\ge\sqrt{xy+yz+zx}=2\)

Xét hàm số g(t)=\(\sqrt{\frac{t^2}{2}+4}+\frac{4}{t}\left(t\ge2\right)\)khi đó ta có 

\(g'\left(t\right)=\frac{t}{2\sqrt{\frac{t^2}{2}+4}}-\frac{4}{t^2};g'\left(t\right)=0\Leftrightarrow t^6-32t^2-256=0\Leftrightarrow t=2\sqrt{2}\)

Lập bảng biến thiên ta có min[2;\(+\infty\)\(g\left(t\right)=g\left(2\sqrt{2}\right)=3\sqrt{2}\)

Hay minS=\(3\sqrt{2}\)<=> a=c=1; b=2

26 tháng 8 2020

Đặt a=xc; b=cy (x;y >=1)

  • Thay x=1 vào giả thiết ta có \(\sqrt{b-c}=\sqrt{b}\Rightarrow c=0\) (không thỏa mãn vì c>0)
  • Thay y=1 vào giả thiết ta có \(\sqrt{a-c}=\sqrt{a}\Rightarrow c=0\)( không thỏa mãn vì c>0)
  • Xét x,y>1 thay vào giả thiết ta có

\(\sqrt{x-1}+\sqrt{y-1}=\sqrt{xy}\Leftrightarrow x+y-2+2\sqrt{\left(x-1\right)\left(y-1\right)}=xy\)

\(\Leftrightarrow xy-x-y+1-2\sqrt{\left(x-1\right)\left(y-1\right)}+1=0\)

\(\Leftrightarrow\left(\sqrt{\left(x-1\right)\left(y-1\right)}-1\right)^2=0\)

\(\Leftrightarrow\sqrt{\left(x-1\right)\left(y-1\right)}=1\Leftrightarrow xy=x+y\ge2\sqrt{xy}\Rightarrow xy\ge4\)

Biểu thức P được viết lại như sau

\(P=\frac{x}{y+1}+\frac{y}{x+1}+\frac{1}{x+y}+\frac{1}{x^2+y^2}=\frac{x^2}{xy+x}+\frac{y^2}{xy+y}+\frac{1}{x^2+y^2}+\frac{1}{\left(x+y\right)^2-2xy}\)

\(P\ge\frac{\left(x+y\right)^2}{2xy+x+y}+\frac{1}{x+y}+\frac{1}{\left(x+y\right)^2-2xy}=\frac{xy}{3}+\frac{1}{xy}+\frac{1}{x^2y^2-2xy}=\frac{x^3y^3-2x^2y^2+3xy-3}{3\left(x^2y^2-2xy\right)}\)

Đặt t=xy với t>=4

Xét hàm số \(f\left(t\right)=\frac{t^3-2t^2+3t-3}{t^2-2t}\left(t\ge4\right)\)

Ta có \(f'\left(t\right)=\frac{t^4-4t^3+t^2+6t-6}{\left(t^2-2t\right)^2}=\frac{t^3\left(t-4\right)+6\left(t-4\right)+18}{\left(t^2-2t\right)^2}>0\forall t\ge4\)

Lập bảng biến thiên ta có \(minf\left(t\right)=f\left(4\right)=\frac{41}{8}\)

Vậy \(minP=\frac{41}{24}\)khi x=y=z=2 hay a=b=2c