K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

8 tháng 3 2018

\(\frac{a}{b+c+d}+1=\frac{b}{a+c+d}+1=\frac{c}{a+b+d}+1=\frac{d}{a+b+c}+1\)

\(\Rightarrow\frac{a+b+c+d}{b+c+d}=\frac{a+b+c+d}{a+c+d}=\frac{a+b+c+d}{a+b+d}=\frac{a+b+c+d}{a+b+c}\)

Vì \(a+b+c+d\ne0\) nên \(b+c+d=a+c+d=a+b+d=a+b+c\)

\(\Rightarrow a=b=c=d\)

\(\Rightarrow A=1+1+1+1=4\)

2 tháng 9 2018

Áp dụng tính chất dãy tỉ số bằng nhau

\(\frac{x}{5}=\frac{y}{7}=\frac{z}{9}=\frac{x-y+z}{5-7+9}=\frac{315}{7}=45\)

  suy ra:   x/5 = 45   =>  x  =  225

               y/7 = 45  =>  y  =  315

               z/9 = 45  =>  z  =  405

4 tháng 8 2016

áp dụng tính chất dẫy tỉ số = nhau ta được 

b+c+d/a=c+d+a/b=a+b+d/c=a+b+c/d= b+c+d+c+d+a+a+b+d+a+b+c / a+b+c+d = 3 

do b+c+d/a=c+d+a/b=a+b+d/c=a+b+c/d = k 

suy ra k =3 .leuleuđơn giản vậy thôi

4 tháng 8 2016

k = 3  có đúng ko bạn 

22 tháng 8 2017

\(\frac{a}{b+c+d}=\frac{b}{c+d+a}=\frac{c}{b+a+b}=\frac{d}{a+b+c}\)

\(\Rightarrow\frac{b+c+d}{a}=\frac{c+d+a}{b}=\frac{b+a+b}{c}=\frac{a+b+c}{d}\)

\(\Rightarrow\frac{b+c+d}{a}+1=\frac{c+d+a}{b}+1=\frac{b+a+b}{c}+1=\frac{a+b+c}{d}+1\)

\(=\frac{b+c+d}{a}+\frac{a}{a}=\frac{c+d+a}{b}+\frac{b}{b}=\frac{b+a+b}{c}+\frac{c}{c}=\frac{a+b+c}{d}+\frac{d}{d}\)

\(=\frac{a+b+c+d}{a}=\frac{a+b+c+d}{b}=\frac{a+b+c+d}{c}=\frac{a+b+c+d}{d}\)

\(\Rightarrow a=b=c=d\)

Do đó \(\frac{a+b}{c+d}+\frac{b+c}{c+d}+\frac{c+d}{a+b}=\frac{a+a}{a+a}+\frac{a+a}{a+a}+\frac{a+a}{a+a}=1+1+1=3\)

4 tháng 12 2015

\(\Rightarrow\frac{a}{b+c+d}+1=\frac{b}{a+c+d}+1=\frac{c}{a+b+d}+1=\frac{d}{a+b+c}+1\)

\(\Leftrightarrow\frac{a+b+c+d}{b+c+d}=\frac{a+b+c+d}{a+c+d}=\frac{a+b+c+d}{a+b+d}=\frac{a+b+c+d}{a+b+c}\)

=> b+c+d = a+c+d =a+b+d =a+b+c 

=> a=b=c=d

Vậy T =1+1+1+1 =4

18 tháng 10 2019

Có: \(\frac{a}{b}=\frac{c}{d}\Rightarrow\frac{a}{c}=\frac{b}{d}\)

Đặt \(\frac{a}{c}=\frac{b}{d}=k\left(1\right)\\ \Rightarrow\left\{{}\begin{matrix}a=ck\\b=dk\end{matrix}\right.\)

\(\frac{a-b}{c-d}=\frac{ck-dk}{c-d}=\frac{k\left(c-d\right)}{c-d}=k\left(2\right)\)

(1)(2) \(\Rightarrow\frac{a}{c}=\frac{a-b}{c-d}\)

18 tháng 10 2019

Cảm ơn bạn nhiều nha

8 tháng 1 2019

Áp dụng tính chất của dãy tỉ số bằng nhau ta có :

\(\frac{b+c+d}{a}=\frac{c+d+a}{b}=\frac{d+a+b}{c}=\frac{a+b+c}{d}\)

\(=\frac{b+c+d+c+d+a+d+a+b+a+b+c}{a+b+c+d}\)

\(=\frac{3a+3b+3c+3d}{a+b+c+d}\)

\(=\frac{3\left(a+b+c+d\right)}{a+b+c+d}\)

\(=3\)

Vậy k = 3

Vậy k = 3

Chúc bạn hok tốt !

19 tháng 11 2017

Ta có:\(\frac{b+c+d}{a}=\frac{c+d+a}{b}=\frac{d+a+b}{c}=\frac{a+b+c}{d}\)

=>\(\frac{b+c+d}{a}+1=\frac{c+d+a}{b}+1=\frac{d+a+b}{c}+1=\frac{a+b+c}{d}+1\)

=>\(\frac{a+b+c+d}{a}=\frac{a+b+c+d}{b}=\frac{a+b+c+d}{c}=\frac{a+b+c+d}{d}\)

Vì các phân số trên có cùng tử. Nên các mẫu của phân số đó bằng nhau.

=>a=b=c=d

=>M=\(\frac{a+b}{c+d}+\frac{b+c}{d+a}+\frac{c+d}{a+b}+\frac{d+a}{b+c}\)=\(\frac{a+a}{a+a}+\frac{b+b}{b+b}+\frac{c+c}{c+c}+\frac{d+d}{d+d}\)=1+1+1+1=4

Vậy M=4

18 tháng 4 2017

\(\frac{b+c+d}{a}=\frac{c+d+a}{b}=\frac{d+a+b}{c}=\frac{a+b+c}{d}=\frac{3\left(a+b+c+d\right)}{a+b+c+d}=3\)

Vậy 3a= b+c+d     3b=c+d+a    3c=d+a+b    3d=a+b+c

Suy ra a=b=c=d

Thay vào ta có M=1+1+1+1=4

BẤM ĐÚNG CHO MÌNH NHÉ

12 tháng 11 2016

Áp dụng tính chất dãy tỉ số bằng nhau ta có:

\(\frac{a}{b+c+d}=\frac{b}{a+c+d}=\frac{c}{a+b+d}=\frac{d}{a+b+c}\) =\(\frac{a+b+c+d}{b+c+d+a+c+d+a+b+d+a+b+c}\)

Vì a+b+c+d khác 0

=> b+c+d=a+c+d=a+b+d=a+b+c

=>a=b=c=d

Khi đó:

a + b = c+d

b+c= (a+d)

c+d=a+b

d+a=b+c

=>\(\frac{a+b}{c+d}=\frac{b+c}{a+d}=\frac{c+d}{a+b}=\frac{d+a}{b+c}=1\)

 

 

 

12 tháng 11 2016

mk có chút nhầm lẫn các đấu = phải là +