Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có: a+b+c=1 <=>(a+b+c)2 = 1 <=> ab+bc+ca=0 (1)
Theo dãy tỉ số bằng nhau ta có:
xa=yb=zc=x+y+za+b+c=x+y+z1=x+y+z
<=> x = a(x+y+z) ; y = b(x+y+z) ; z = c(x+y+z)
=> xy+yz+zx= ab(x+y+z)2+bc(x+y+z)2+ca(x + y + z)2
<=> xy+yz+zx =(ab+bc+ca)(x+y+z)2 (2)
từ (1) và (2) => xy + yz + zx = 0
Mình nhâm sorry
Từ x : y : z = a : b : c
=> xa=yb=zcxa=yb=zc
=> ax=by=czax=by=cz
Áp dụng t/c dãy tỉ số bằng nhau:
ax=by=cz=a+b+cx+y+z=1x+y+zax=by=cz=a+b+cx+y+z=1x+y+z (Vì a + b + c = 1) (*1)
Ta có : ax=by=czax=by=cz
=> (ax)2=(by)2=(cy)2(ax)2=(by)2=(cy)2= a2x2=b2y2=c2z2a2x2=b2y2=c2z2
Áp dụng t/c dãy tỉ số bằng nhau:
a2x2=b2y2=c2z2=a2+b2+c2x2+y2+z2=1x2+y2+z2a2x2=b2y2=c2z2=a2+b2+c2x2+y2+z2=1x2+y2+z2 (*2)
Từ (1),(2) => (1x+y+z)2=1x2+y2+z2(1x+y+z)2=1x2+y2+z2
=> 12(x+y+z)2=1x2+y2+z212(x+y+z)2=1x2+y2+z2
=> 1(x+y+z)2=1x2+y2+z21(x+y+z)2=1x2+y2+z2
=> (x+y+z)2=x2+y2+z2(x+y+z)2=x2+y2+z2 (ĐPCM) (Vì hai phân số bằng nhau,tử số bằng nhau => mẫu số bằng nhau.)
Bài 1:
\(2\left(x+y\right)=5\left(y+z\right)=3\left(z+x\right)\)
\(\Rightarrow\frac{2\left(x+y\right)}{30}=\frac{5\left(y+z\right)}{30}=\frac{3\left(z+x\right)}{30}\)
\(\Rightarrow\frac{x+y}{15}=\frac{y+z}{6}=\frac{z+x}{10}\)
Áp dụng tính chất của dãy tỉ số bằng nhau ta có:
\(\frac{z+x}{10}=\frac{y+z}{6}=\frac{\left(z+x\right)-\left(y+z\right)}{10-6}=\frac{x-y}{4}\left(1\right)\)
\(\frac{x+y}{15}=\frac{z+x}{10}=\frac{\left(x+y\right)-\left(z+x\right)}{15-10}=\frac{y-z}{5}\left(2\right)\)
Từ (1) và (2) => \(\frac{x-y}{4}=\frac{y-z}{5}\) (đpcm)
Bài 2:
\(b^2=ac\Rightarrow\frac{a}{b}=\frac{b}{c}\Rightarrow\frac{a^2}{b^2}=\frac{b^2}{c^2}\)
Áp dụng tính chất của dãy tỉ số bằng nhau ta có:
\(\frac{a^2}{b^2}=\frac{b^2}{c^2}=\frac{a^2+b^2}{b^2+c^2}\left(1\right)\)
Ta lại có: \(\frac{a^2}{b^2}=\frac{a}{b}\cdot\frac{a}{b}=\frac{a}{b}\cdot\frac{b}{c}=\frac{a}{c}\left(2\right)\)
Từ (1) và (2) => \(\frac{a^2+b^2}{b^2+c^2}=\frac{a}{c}\) (đpcm)
Các bạn giúp mình với, mai mình phải nộp rồi, ai nhanh mình k cho !!!
bn này ra toàn bài khó nhỉ :)
đặt \(\frac{x}{a}=\frac{y}{b}=\frac{z}{c}=k\Rightarrow x=ak,y=bk,z=ck\)
\(\Rightarrow x^2+y^2+z^2=\left(ak\right)^2+\left(bk\right)^2+\left(ck\right)^2=k^2.\left(a^2+b^2+c^2\right)=k^2.1=k^2\left(1\right)\)
\(\left(x+y+z\right)^2=\left(ak+bk+ck\right)^2=\left[k.\left(a+b+c\right)\right]^2=\left(k.1\right)^2=k^2\left(2\right)\)
từ (1) và (2) => đpcm
ps: ko chắc lắm :))
Ta có : \(\frac{x}{a}=\frac{y}{b}=\frac{z}{c}=\frac{x+y+z}{a+b+c}=x+y+z\) vì a + b + c = 1
Do đó \((x+y+z)^2=\frac{x^2}{a^2}=\frac{y^2}{b^2}=\frac{z^2}{c^2}=\frac{x^2+y^2+z^2}{a^2+b^2+c^2}=x^2+y^2+z^2\)vì \(a^2+b^2+c^2=1\)
Vậy :
Giải:
Đặt \(\frac{x}{a}=\frac{y}{b}=\frac{z}{c}=k\)
\(\Rightarrow x=ak,y=bk,z=ck\)
Ta có:
\(\left(x+y+z\right)^2=\left(ak+bk+ck\right)^2=\left[k\left(a+b+c\right)\right]^2=\left(k.1\right)^2=k^2\) (1)
\(x^2+y^2+z^2=\left(ak\right)^2+\left(bk\right)^2+\left(ck\right)^2=a^2.k^2+b^2.k^2+c^2.k^2=\left(a^2+b^2+c^2\right).k^2=1.k^2=k^2\left(2\right)\)
Từ (1) và (2) \(\Rightarrow\left(x+y+z\right)^2=x^2+y^2+z^2\left(đpcm\right)\)
Từ \(\frac{y+z-x}{x}=\frac{z+x-y}{y}=\frac{x+y-z}{z}\)
\(\Rightarrow\frac{y+z-x}{x}+2=\frac{z+x-y}{y}+2=\frac{x+y-z}{z}+2\)
\(\Rightarrow\frac{x+y+z}{x}=\frac{x+y+z}{y}=\frac{x+y+z}{z}\left(1\right)\)
*)Xét \(x+y+z\ne0\left(2\right)\). Từ (1) và (2)
\(\Rightarrow x=y=z\). Khi đó \(B=\frac{x+y}{y}\cdot\frac{y+z}{z}\cdot\frac{x+z}{x}=2\cdot2\cdot2=8\)
*)Xét \(x+y+z=0\)\(\Rightarrow\left\{\begin{matrix}x+y=-z\\y+z=-x\\x+z=-y\end{matrix}\right.\)
Khi đó \(B=\frac{x+y}{y}\cdot\frac{y+z}{z}\cdot\frac{x+z}{x}=\frac{-z}{y}\cdot\frac{-x}{z}\cdot\frac{-y}{x}=-1\)
a)
Ta có \(\frac{y+z-x}{x}=\frac{z+x-y}{y}=\frac{x+y-z}{z}\)
Áp dụng tính chất dãy tỉ số bằng nhau ta có
\(\frac{y+z-x}{x}=\frac{z+x-y}{y}=\frac{x+y-z}{z}=\frac{y+z-x+z+x-y+x+y-z}{x+y+z}=\frac{x+y+z}{x+y+z}=1\)
\(\Rightarrow\left\{\begin{matrix}\frac{y+z-x}{x}=1\\\frac{z+x-y}{y}=1\\\frac{x+y-z}{z}=1\end{matrix}\right.\)
\(\Rightarrow\left\{\begin{matrix}y+z-x=x\\z+x-y=y\\x+y-z=z\end{matrix}\right.\)
\(\Rightarrow\left\{\begin{matrix}y+z=2x\\z+x=2y\\x+y=2z\end{matrix}\right.\) (1)
Ta có \(B=\left(1+\frac{x}{y}\right)\left(1+\frac{y}{z}\right)\left(1+\frac{z}{x}\right)\)
\(\Rightarrow B=\frac{x+y}{y}.\frac{y+z}{z}.\frac{x+z}{x}\)
Thế (1) vào biểu thức B
\(\Rightarrow B=\frac{2z}{y}.\frac{2x}{z}.\frac{2y}{x}\)
\(\Rightarrow B=2.2.2=8\)
Vậy biểu thức \(B=8\)