Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\frac{a+b-c}{c}\)=\(\frac{b+c-a}{a}\)=\(\frac{c+a-b}{b}\)=\(\frac{a+b-c+b+c-a+c+a-b}{a+b+c}\)=\(\frac{a+b+c}{a+b+c}\)=1.Ta có\(\frac{a+b-c}{c}\)=1=>a+b-c=c
=>a+b=2c
\(\frac{b+c-a}{a}\)=1=>b+c-a=a
=>b+c=2a
\(\frac{c+a-b}{b}\)=1=>c+a-b=b
=>c+a=2b
B=(1+\(\frac{b}{a}\))+(1+\(\frac{a}{c}\))+(1+\(\frac{c}{b}\))=(Quy đồng lên cộng như bình thường nha)\(\frac{a+b}{a}\).\(\frac{c+a}{c}\).\(\frac{b+c}{b}\)
(Thay từ cái trên kia kìa bạn ạ vào biểu thức thì ta có) =\(\frac{2a.2b.2c}{abc}\)
=\(\frac{8\left(abc\right)}{abc}\)
=8
mk làm bài 1 thui,bài 2 chỉ qui đồng ms
3a/6 = 3b/4 => 3(a-b)/ (6-4) = 3.4,5/2= 13,5/2 =k
a = 2k=13,5
b = 4k/3 =9
\(\frac{1}{c}=\frac{1}{2}\left(\frac{1}{a}+\frac{1}{b}\right)\)
=> \(\frac{2}{c}=\frac{1}{a}+\frac{1}{b}\)
=> \(\frac{2}{c}=\frac{a+b}{ab}\)
=> 2ab = ac + bc
=> ac + bc - 2ab = 0
=> (ac - ab) + (bc - ab) = 0
=> a(c - b) + b(c - a) = 0
=> a(c - b) = -b(c - a)
=> a(c - b) = b(a - c)
=> \(\frac{a}{b}=\frac{a-c}{c-b}\) (đpcm)
Ta có:
\(\frac{1}{c}=\frac{1}{2}.\left(\frac{1}{a}+\frac{1}{b}\right)\)
\(\Rightarrow\frac{1}{a}+\frac{1}{b}=\frac{1}{c}:\frac{1}{2}\)
\(\Rightarrow\frac{1}{a}+\frac{1}{b}=\frac{1}{c}.2\)
\(\Rightarrow\frac{1}{a}+\frac{1}{b}=\frac{2}{c}\)
\(\Rightarrow\frac{b}{ab}+\frac{a}{ab}=\frac{2}{c}\)
\(\Rightarrow\frac{b+a}{ab}=\frac{2}{c}\)
\(\Rightarrow\frac{a+b}{ab}=\frac{2}{c}\)
\(\Rightarrow2ab=\left(a+b\right).c\)
\(\Rightarrow ab+ab=ac+bc\)
\(\Rightarrow ac-ab=ab-bc\)
\(\Rightarrow a.\left(c-b\right)=b.\left(a-c\right)\)
\(\Rightarrow\frac{a}{b}=\frac{a-c}{c-b}\left(đpcm\right).\)
Chúc bạn học tốt!
Từ \(\frac{1}{c}=\frac{1}{2}\left(\frac{1}{a}+\frac{1}{b}\right)\Rightarrow\frac{1}{c}=\frac{1}{2}\left(\frac{a+b}{ab}\right)\)
\(\Rightarrow\frac{1}{c}=\frac{a+b}{2ab}\)
\(\Rightarrow2ab=c.\left(a+b\right)\)
\(\Rightarrow ab+ab=ac+bc\)
\(\Rightarrow ab-bc=ac-ab\)
\(\Rightarrow b.\left(a-c\right)=a.\left(c-b\right)\)
\(\Rightarrow\frac{a}{b}=\frac{a-c}{c-b}\)
Từ \(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}=0\Rightarrow\frac{ab+bc+ac}{abc}=0\Rightarrow ab+bc+ac=0\)
Ta có : \(a^2+b^2+c^2=\left(a+b+c\right)^2-2\left(ab+bc+ac\right)=\left(a+b+c\right)^2=1\)