K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

10 tháng 8 2018

a,Câu hỏi của Cỏ dại - Toán lớp 8 - Học toán với OnlineMath

b,Câu hỏi của Ngô Đức Duy - Toán lớp 8 - Học toán với OnlineMath

c,Câu hỏi của Cỏ dại - Toán lớp 8 - Học toán với OnlineMath

13 tháng 8 2017

4) Ta có : A=(a+b+c+d)(a-b-c+d)=(a-b+c-d)(a+b-c-d)

=> (a+d)2 - (b+c)2= (a-d)2 - (c-b)2

=> a2+ d2+ 2ad - b2- c2- 2bc=a2 + d2 - 2ad - c2-b2+2bc

Rút gọn ta được: 4ad = 4bc => ad = bc =>\(\dfrac{a}{c}=\dfrac{b}{d}\)

13 tháng 8 2017

1) a2+b2+c2+3=2(a+b+c) =>(a-1)2+(b-1)2+(c-1)2=0

=> a-1=b-1=c-1=0 => a=b=c=1 =>đpcm

13 tháng 10 2018

Câu hỏi của Ngô Đức Duy - Toán lớp 8 - Học toán với OnlineMath tham khảo

14 tháng 10 2018

\(a+b+c=0\Rightarrow a+b=-c\)      

\(\Rightarrow\left(a+b\right)^5=-c^5\)

\(\Rightarrow a^5+5a^4b+10a^3b^2+10a^2b^3+5ab^4+b^5=-c^5\)      

\(\Rightarrow a^5+b^5+c^5+5ab\left[a^3+2a^2b+2ab^2+b^3\right]=0\)

\(\Rightarrow a^5+b^5+c^5+5ab\left[\left(a+b\right)\left(a^2-ab+b^2\right)+2ab\left(a+b\right)\right]=0\)

\(\Rightarrow a^5+b^5+c^5+5ab\left(a+b\right)\left(a^2+ab+b^2\right)=0\)

\(\Rightarrow2\left(a^5+b^5+c^5\right)+5ab\left(-c\right)\left[2a^2+2ab+2b^2\right]=0\)

\(\Rightarrow2\left(a^5+b^5+c^5\right)-5abc\left[\left(a^2+2ab+b^2\right)+a^2+b^2\right]=0\)

\(\Rightarrow2\left(a^5+b^5+c^5\right)-5abc\left[a^2+b^2+c^2\right]=0\)

\(\Rightarrow2\left(a^5+b^5+c^5\right)=5abc\left(a^2+b^2+c^2\right)\)

Chúc bạn học tốt.

NV
21 tháng 3 2019

a/ \(\left(x+2\right)\left(x+5\right)\left(x+3\right)\left(x+4\right)-24\)

\(=\left(x^2+7x+10\right)\left(x^2+7x+12\right)-24\)

\(=\left(x^2+7x+10\right)^2+2\left(x^2+7x+10\right)-24\)

\(=\left(x^2+7x+10-4\right)\left(x^2+7x+10+6\right)\)

\(=\left(x^2+7x+6\right)\left(x^2+7x+16\right)\)

\(=\left(x+1\right)\left(x+6\right)\left(x^2+7x+16\right)\)

b/ \(\left(x^2-2x+4\right)\left(x^2+3x+4\right)-14x^2\)

\(=x^2\left[\left(x-2+\frac{4}{x}\right)\left(x+3+\frac{4}{x}\right)-14\right]\)

\(=x^2\left[\left(x-2+\frac{4}{x}\right)^2+5\left(x-2+\frac{4}{x}\right)-14\right]\)

\(=x^2\left(x-2+\frac{4}{x}-2\right)\left(x-2+\frac{4}{x}+7\right)\)

\(=x^2\left(x-4+\frac{4}{x}\right)\left(x+5+\frac{4}{x}\right)\)

\(=\left(x^2-4x+4\right)\left(x^2+5x+4\right)\)

\(=\left(x-2\right)^2\left(x+1\right)\left(x+4\right)\)

NV
21 tháng 3 2019

c/ \(a^2b-a^2c+b^2\left(a-c\right)+c^2a-c^2b\)

\(=b\left(a^2-c^2\right)-ac\left(a-c\right)+b^2\left(a-c\right)\)

\(=\left(a-c\right)\left(ab+bc-ac+b^2\right)\)

d/ \(a^3+b^3+3ab\left(a+b\right)+c^3-3ab\left(a+b\right)-3abc\)

\(=\left(a+b\right)^3+c^3-3ab\left(a+b+c\right)\)

\(=\left(a+b+c\right)\left(\left(a+b\right)^2-\left(a+b\right)c+c^2\right)-3ab\left(a+b+c\right)\)

\(=\left(a+b+c\right)\left(a^2+b^2+c^2-ab-ac-bc\right)\)