Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có :
\(A+B=a\sqrt{a}+\sqrt{ab}+b\sqrt{b}+\sqrt{ab}\)
\(=a\sqrt{a}+b\sqrt{b}+2\sqrt{ab}\)
\(=\)\(\left(\sqrt{a}+\sqrt{b}\right)\left[\left(\sqrt{a}+\sqrt{b}\right)^2-3\sqrt{ab}\right]+2\sqrt{ab}\)
\(A.B=\sqrt{ab}\left(\sqrt{ab+1}\right)+\sqrt{ab}\left(\sqrt{a}+\sqrt{b}\right)\left[\left(\sqrt{a}+\sqrt{b}\right)^2-3\sqrt{ab}\right]\)
Đặt \(\sqrt{a}+\sqrt{b}=x;\)\(\sqrt{ab}=y\)\(\left(x;y\in Q\right)\)thì :
\(A+B=x\left(x^2-3y\right)+2y\)
\(A.B=y\left(y+1\right)+xy\left(x^2-3y\right)\)
\(\Rightarrow\)Các đa thức này là các số hữa tỉ \(\left(đpcm\right)\)
Lời giải:
Ta có:
\(A+B=a\sqrt{a}+\sqrt{ab}+b\sqrt{b}+\sqrt{ab}\)
\(=(\sqrt{a})^3+(\sqrt{b})^3+2\sqrt{ab}\)
\(=(\sqrt{a}+\sqrt{b})(a-\sqrt{ab}+b)+2\sqrt{ab}\)
\(=(\sqrt{a}+\sqrt{b})[(\sqrt{a}+\sqrt{b})^2-3\sqrt{ab}]+2\sqrt{ab}\)
Ta thấy \(\sqrt{a}+\sqrt{b}\in\mathbb{Q}; \sqrt{ab}\in\mathbb{Q}\) nên:
\((\sqrt{a}+\sqrt{b})[(\sqrt{a}+\sqrt{b})^2-3\sqrt{ab}]\in\mathbb{Q}\) và \(2\sqrt{ab}\in\mathbb{Q}\)
Do đó: \(A+B\in\mathbb{Q}\)
Mặt khác:
\(AB=\sqrt{a}(a+\sqrt{b}).\sqrt{b}(b+\sqrt{a})\)
\(=\sqrt{ab}(a+\sqrt{b})(b+\sqrt{a})\)
\(=\sqrt{ab}(ab+a\sqrt{a}+b\sqrt{b}+\sqrt{ab})\)
\(=\sqrt{ab}(A+B)\)
Do $A+B$ là số hữu tỉ (cmt) và $\sqrt{ab}$ cũng là số hữu tỉ, nên \(AB\) là số hữu tỉ.
Bác Akai Haruma làm nhầm đoạn cuối. Chắc do học nhiều nên mệt. Mình đại diện các bạn khác tiếp sức cho bác.
\(AB=\sqrt{ab}\left(a+\sqrt{b}\right)\left(b+\sqrt{a}\right)\)
\(=\sqrt{ab}\left(ab+a\sqrt{a}+b\sqrt{b}+\sqrt{ab}\right)\)
\(=\sqrt{ab}\left(ab-\sqrt{ab}+a\sqrt{a}+\sqrt{ab}+b\sqrt{b}+\sqrt{ab}\right)\)
\(=\sqrt{ab}\left(ab-\sqrt{ab}+A+B\right)\)
Vì \(\left\{{}\begin{matrix}A+B\in Q\\\sqrt{ab}\in Q\\ab\in Q\end{matrix}\right.\)
\(\Rightarrow AB\in Q\)
Ta có \(\Delta=b^2-4ac=\left(a+c\right)^2-4ac=\left(a-c\right)^2\)
\(\Rightarrow x_1=\frac{-b+a-c}{2a};x_2=\frac{-b-a+c}{2a}\in Q.\)