\(A=2=2^2+2^3+....+2^{60}\)

Chứng minh A : 3 ; A : 7 và A : 42

">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

21 tháng 10 2018

TH1 :\(A=2+2^2+...+2^{60}\)

\(=\left(2+2^2\right)+...+\left(2^{59}+2^{60}\right)\)

\(=2\left(1+2\right)+...+2^{59}\left(1+2\right)\)

\(=2.3+...+2^{59}.3⋮3\)

TH2:\(A=2+2^2+...+2^{60}\)

\(=\left(2+2^2+2^3\right)+...+\left(2^{58}+2^{59}+2^{60}\right)\)

\(=2\left(1+2+2^2\right)+...+2^{58}\left(1+2+2^2\right)\)

\(=2.7+...+2^{58}.7⋮7\)

TH3 :\(A=2+2^2+2^3+...+2^{59}+2^{60}\)

\(=\left(2+2^2+2^3+2^4\right)+...+\left(2^{57}+2^{58}+2^{59}+2^{60}\right)\)

\(=2\left(1+2+2^2+2^3\right)+...+2^{57}\left(1+2+2^2+2^3\right)\)

\(=2.15+...+2^{57}.15⋮15\)

\(\Rightarrow\hept{\begin{cases}A⋮3\\A⋮7\\A⋮15\end{cases}}\)

21 tháng 10 2018

\(A=2+2^2+2^3+...+2^{60}\)

\(A=2.\left(1+2\right)+2^3\left(1+2\right)+...+2^{59}.\left(1+2\right)\)

\(A=2.3+2^2.3+...+2^{59}.3\)

Vì các số hạng của tổng trên đều chia hết cho 3 nên suy ra A chia hết cho 3

Các câu sau cx y zậy nhé,chỉ khác là gộp thêm nhiều số hạng lại thui

1 tháng 10 2017

Vì 13 là lẻ \(\Rightarrow\) 13, 132, 133, 134, 135, 136 là lẻ.

Mà lẻ + lẻ + lẻ + lẻ + lẻ + lẻ = chẵn nên 13 + 132 + 133 + 134 + 135 + 136 là chẵn. \(\Rightarrow\) 13 + 132 + 133 + 134 + 135 + 136 \(⋮\) 2

\(\Rightarrow\) ĐPCM

25 tháng 4 2018

A = 2 + 22 + 23 + 24 + ... + 260

A = (2 + 22) + (23 + 24) + ... + ( 259 + 260)

A = 1.(2 + 22) + 22(2 + 22) + ...+ 258.(2 + 22)

A = 1 . 6 + 22 . 6 + ... + 258 . 6

A = 6 . (1 + 2+... + 258\(⋮\)3

Vậy A \(⋮\)3.

~~~
Mấy phần kia làm tương tự nhé.

#Sunrise

25 tháng 4 2018

A = 2 + 22 + 23 + 24 + ... + 260

A = ( 2 + 22 + 23 + 25 ) + ... + ( 257 + 258 + 259 + 260 )

A = 2.( 1 + 2 + 4 + 8 ) + ... + 257.( 1 + 2 + 4 + 8 )

A = 2 . 15 + ... + 257 . 15 chia hết cho cả 3 và 5

Làm tương tự với A chia hết cho 7 ta nhóm ba số liên tiếp với nhau

17 tháng 10 2018

A = 2 + 22+ 23 + .......... + 260 = ( 2 + 22) + ( 23+ 24) + .... + ( 259+ 260)

A= 2 . ( 2 + 1 ) + 23 . ( 2 + 1 ) + ..... + 259. ( 2 + 1 )

A = 3. ( 2 + 23+ ...... + 259)

\(\Rightarrow A⋮3\)

A = 2 + 22+ 23 + .......... + 260

A = ( 2 + 22+ 23 ) + ( 24+ 25+ 26) + ....... + ( 258+ 259+ 260

A = 2 . ( 1 + 2 + 22) + 24( 1 + 2 + 22) + ........ + 258( 1 + 2 + 22)

A = 7 . (  2 + 24 + ....... + 258

\(\Rightarrow A⋮7\)

17 tháng 10 2018

A = 2 + 22+ 23+ ........ + 260

A = ( 2 + 22+ 23+ 24) + ( 25+ 26+ 27+ 28) + ........ + ( 257+ 258+ 259+ 260

A= 2 ( 1 + 2 + 22+ 23) + 25( 1 + 2 + 22 + 23) + .....   + 257( 1 +2 + 22+ 23 ) 

A = ( 1 + 2 + 22+ 23) . ( 2 + 25 + ........ + 257

A = 15 ( 2 + 25 + ........ + 257

22 tháng 2 2020

    A = 2 + 22 + 23 +......+ 260

-> A = ( 2 + 22 ) + ( 23 + 24 ) + ....+ ( 259 + 260 )

-> A = 2.( 1+2 ) + 23.( 1+2) +......+ 259.( 1+2)

-> A = 2.3 + 23.3 +......+ 259.3

-> A= 3.( 2 + 23 +.....+ 259)

      Vì 3 chia hết cho 3

-> 3.( 2 + 23 +...+259)

      Vậy  A chia hết cho 3

    

   A = 2 + 22  + 23 +.......+ 260

-> A = ( 2 + 22 + 23 ) +.......+ ( 258 + 259 + 260 )

-> A = 2.( 1 + 2 + 22 ) +......+  258 .( 1 + 2 + 22 )

-> A = 2.7 +.....+ 258.7

-> A = 7.( 2 + .....+ 258 )

      Vì 7 chia hết cho 7

-> 7.( 2+....+ 258 )

     Vậy A chia hết cho 7

    A = 2 + 22 + 23 +......+ 260

-> A = ( 2 + 22 + 23 + 24 ) +.....+ ( 257 + 258 + 259 + 260 )

-> A = 2.( 1 + 2 + 22 + 23 ) +.....+ 257.( 1+ 2 + 22 + 23 )

-> A = 2.15 + ......+ 257.15

-> A = 15.( 2 +.... + 257 )

     Vì 15 chia hết cho 15

-> 15.( 2 +....+ 257 )

     Vậy A chia hết cho 15

13 tháng 10 2018

A = 2 + 22 + 23 +...+ 260

A = (2+22) + (23 + 24) + ...+ (259 + 260)

A = 2.(1+2) + 23.(1+2) + ...+ 259.(1+2)

A = 2.3 + 23.3 + ....+ 259.3

A = 3.(2+23 +...+259) chia hết cho 3

..

các bài còn lại bn dựa zô mak lm\

13 tháng 10 2018

\(A=2+2^2+2^3+...+2^{60}\)

\(A=\left(2+2^2\right)+\left(2^3+2^4\right)+...+\left(2^{59}+2^{60}\right)\)

\(A=6+2^2\left(2+2^2\right)+...+2^{58}\left(2+2^2\right)\)

\(A=6\cdot1+2^2\cdot6+...+2^{58}\cdot6\)

\(A=6\cdot\left(1+2^2+...+2^{58}\right)⋮3\)

CMTT

1 tháng 2 2019

1/A=1.21.22.23.24.25                                                               câu 2 làm tương tự                                                            

A.2=2.22.23.24.25.26                                

A.2-A=(2.22.23.24.25.2 mũ 6)-(1.21.22.23.24.25)

A=26-1

3 A=1+3+32+33+...37

3.A=3+32+33+34...+38

2A=38-1

A=(38-1):2

17 tháng 5 2017

Giải:

\(A=\text{( }2^1+2^2+2^3\text{)}+\left(2^4+2^5+2^6\right)+...+\left(2^{58}+2^{59}+2^{60}\right)\)

\(A=2^1.\left(1+2+2^2\right)+2^4.\left(1+2+2^2\right)+...+2^{58}.\left(1+2+2^2\right)\)

\(A=2.7+2^4.7+...+2^{58}.7\)

\(A=7.\left(2+2^4+2^{58}\right)⋮7\)

\(\Rightarrow A=2^1+2^2+2^3+2^4+....+2^{59}+2^{60}\) chia hết cho \(7\)

17 tháng 5 2017

\(\Rightarrow A=\left(2^1+2^2+2^3\right)+\left(2^4+2^5+2^6\right)+....+\left(2^{58}+2^{59}+2^{60}\right)\)

\(\Rightarrow A=2^1\left(1+2+4\right)+2^4\left(1+2+4\right)+...+2^{58}\left(1+2+4\right)\)

\(\Rightarrow A=2^1.7+2^4.7+...+2^{58}.7\)

\(\Rightarrow A=7\left(2^1+2^4+...+2^{58}\right)\)

\(\Rightarrow\)A chia hết cho 7 vì tích có chứ thừa số 7

Vậy A chia hết cho 7