K
Khách
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
HT
1
Các câu hỏi dưới đây có thể giống với câu hỏi trên
20 tháng 4 2018
\(2A=1+\frac{1}{2}+\frac{1}{2^2}+.......+\frac{1}{2^{99}}\)
\(\Rightarrow2A-A=\left(1+\frac{1}{2}+\frac{1}{2^2}+.......+\frac{1}{2^{99}}\right)-\left(\frac{1}{2}+\frac{1}{2^2}+\frac{1}{2^3}+.......+\frac{1}{2^{100}}\right)\)
\(A=1-\frac{1}{2^{100}}\)
\(A=\frac{2^{100}-1}{2^{100}}\)
HN
28 tháng 12 2018
\(a,A=\frac{a^3+2a^2-1}{a^3+2a^2+2a+1}\)
\(=\frac{a^2\left(a+1\right)+\left(a-1\right)\left(a+1\right)}{a^2\left(a+1\right)+a\left(a+1\right)+\left(a+1\right)}\)
\(=\frac{\left(a+1\right)\left(a^2+a-1\right)}{\left(a+1\right)\left(a^2+a+1\right)}\)
\(=\frac{a^2+a-1}{a^2+a+1}\)
\(2A=2^2+2^3+2^4+...+2^{101}\)
\(2A-A=2^2+...+2^{101}-2-...-2^{100}\)
\(A=2^{101}-2\)
\(2.\left(2^{101}-2\right)+3=3^n\)
\(2^{102}-1=3^n\)
5070602400912917605986812821503 = 3^n
đề có sai ko vậy ko ra đc