Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bai 2 :
Ta co :
B = [ 2^1 + 2^2 + 2^3 + 2^4 + 2^5 = 2^6 ] + .... + [ 2^25 + 2^26 + 2^27 + 2^28 +2^29 +2^30 ]
= 2[1 + 2 + 2^2 + 2^3 + 2^4 + 2^5 ] +.....+ 2^25[ 1 + 2 + 2^2 + 2^3 + 2^4 + 2^5 ]
= 2 . 63 +.... + 2^25 . 63
= 63 [2 + ..... + 2^25 ] chia het cho 21
Vay B chia het cho 21
Bai 1 :
Ta co :
A = 1/1 + 1/2^2 + 1/3^3 + 1/4^4 + .... + 1?50^2 < 1/1 + 1/1.2 + 1/2.3 + ..... + 1/49.50
=>1 + 1/1 - 1/2 +1/2 -1/3 + .... +1/449 - 1/50
=> 1 + 1/1 - 1/50
=> 1 + 49/50
=> 99/50 < 2
Vay 1 < 2
4 + 42 + 43 + 44 + ... + 423 + 424
= 4x(1+4) + 42x4x(1+4) + ... + 422x4x(1+4)
= 20 + 42x20 + ... + 422x20
= 20x(1+42+...+422)
Suy ra: A chia hết cho 20
4 + 42 + 43 + 44 + ... + 423 + 424
= (4 + 42 + 43) + ... + (422 + 423 + 424)
= 4x(1+4+42) + ... + 422x(1+4+42)
= 4x21 + ... + 422x21
= (4+...+422)x21
Suy ra: A chia hết cho 21
Vì A chia hết cho 21 , A chia hết cho 20
Suy ra: A chia hết cho 21x20=420
Ta có:B=\(2+2^2+...........+2^{30}\)
\(=\left(2+2^2+2^3+2^4+2^5+2^6\right)+.........+\left(2^{25}+2^{26}+2^{27}+2^{28}+2^{29}+2^{30}\right)\)
\(=2\left(1+2+2^2+2^3+2^4+2^5\right)+.........+2^{25}\left(1+2+2^2+2^3+2^4+2^5\right)\)
\(=2.63+2^7.63+........+2^{25}.63\)
\(=\left(2+2^7+...+2^{25}\right).63\) chia hết cho 21
\(A=\dfrac{1}{1^2}+\dfrac{1}{2^2}+\dfrac{1}{3^2}+...+\dfrac{1}{50^2}=\dfrac{1}{1.1}+\dfrac{1}{2.2}+\dfrac{1}{3.3}+...+\dfrac{1}{50.50}\)\(A=\dfrac{1}{1.1}+\dfrac{1}{2.2}+\dfrac{1}{3.3}+...+\dfrac{1}{50.50}< \dfrac{1}{1.1}+\dfrac{1}{1.2}+\dfrac{1}{2.3}+...+\dfrac{1}{49.50}\left(1\right)\)Mà :\(\dfrac{1}{1}+\dfrac{1}{1.2}+\dfrac{1}{2.3}+...+\dfrac{1}{49.50}=\dfrac{1}{1}+\dfrac{1}{1}-\dfrac{1}{2}+\dfrac{1}{2}-\dfrac{1}{3}+...+\dfrac{1}{49}-\dfrac{1}{50}\)
\(=1+1-\dfrac{1}{50}=1+\dfrac{49}{50}=\dfrac{99}{50}< \dfrac{100}{50}=\dfrac{1}{2}\left(2\right)\)
Từ (1) và (2) ta suy ra A<2
B có 30 số hạng, chia B thành 5 nhóm, mỗi nhóm có 6 số hạng như sau:
\(B=\left(2^1+2^2+2^3+2^4+2^5+2^6\right)+\left(2^7+2^8+2^9+2^{10}+2^{11}+2^{12}\right)+...+\left(2^{25}+2^{26}+2^{27}+2^{28}+2^{29}+2^{30}\right)\)
\(B=2^1\left(1+2+2^2+2^3+2^4+2^5\right)+2^7\left(1+2+2^2+2^3+2^4+2^5\right)+...+2^{25}\left(1+2+2^2+2^3+2^4+2^5\right)\)
\(B=2^1.63+2^7.63+...+2^{25}.63\)
\(B=63.\left(2^1+2^7+...+2^{25}\right)⋮63\)
\(B=21.3.\left(2^1+2^7+...+2^{25}\right)⋮21\left(đpcm\right)\)
a) P=2+22+23+24+...+260 \(⋮\) 21 và 15
\(\Rightarrow\)P = 22+23+24+25+...+261
\(\Rightarrow\) (2P - P) = 261 - 2
\(\Rightarrow\) P = 261 - 2 = 2.(260 - 1)
Để P \(⋮\) 21 và 15 thì (260 - 1) \(⋮\)21 và 15
tức là (260 - 1) \(⋮\)3; 5; 7
*Ta có 260 - 1 = (24)15 = 1615 - 1
= (16 - 1).(1+16+162+163+...+1614)
= 15.(1+16+162+163+...+1614) \(⋮\) 15
Vậy P \(⋮\) 15 (1)
* Ta có 260 - 1 = (26)10 - 1 = 6410 - 1
= (64 - 1).(1+64+642+643+...+649 )
= 63 \(⋮\) (1+64+642+643+...+649 )
= 21.3.(1+64+642+643+...+649 ) \(⋮\) 21
P \(⋮\)21 (2)
Từ (1) và (2) \(\Rightarrow\) P \(⋮\)15 và 21
a, \(A=\frac{1}{1^2}+\frac{1}{2^2}+\frac{1}{3^2}+...+\frac{1}{50^2}\)
\(=1+\frac{1}{2^2}+\frac{1}{3^2}+...+\frac{1}{50^2}\)
Ta có: \(\frac{1}{2^2}< \frac{1}{1.2};\frac{1}{3^2}< \frac{1}{2.3};...;\frac{1}{50^2}< \frac{1}{49.50}\)
\(\Rightarrow1+\frac{1}{2^2}+\frac{1}{3^2}+...+\frac{1}{50^2}< 1+\frac{1}{1.2}+\frac{1}{2.3}+...+\frac{1}{49.50}\)
\(\Rightarrow1< 1+\frac{1}{2^2}+\frac{1}{3^2}+...+\frac{1}{50^2}< 1+\frac{1}{1.2}+\frac{1}{2.3}+...+\frac{1}{49.50}\)
Mà \(1+\frac{1}{1.2}+\frac{1}{2.3}+...+\frac{1}{49.50}=1+1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+...+\frac{1}{49}-\frac{1}{50}=1+1-\frac{1}{50}=2-\frac{1}{50}< 2\)
\(\Rightarrow1+\frac{1}{2^2}+\frac{1}{3^2}+...+\frac{1}{50^2}< 2\Rightarrow A< 2\left(đpcm\right)\)
b, B = 2 + 22 + 23 +...+ 230
= (2+22+23+24+25+26)+...+(225+226+227+228+229+230)
= 2(1+2+22+23+24+25)+...+225(1+2+22+23+24+25)
= 2.63+...+225.63
= 63(2+...+225)
Vì 63 chia hết cho 21 nên 63(2+...+225) chia hết cho 21
Vậy B chia hết cho 21