K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

28 tháng 12 2019

\(A=1+2+2^2+...+2^{2019}+2^{2020}\)

\(A=1+2+\left(2^2+2^3+2^4\right)+...+\left(2^{2018}+2^{2019}+2^{2020}\right)\)

\(A=3+2^2\left(1+2+2^2\right)+...+2^{2018}\left(1+2+2^2\right)\)

\(A=3+2^2.7+....+2^{2018}.7\)

\(A=3+7\left(2^2+....+2^{2018}\right)\)

Vì 3 ko chia hết cho 7

=> A ko chia hết cho 7

=> A dư 3

6 tháng 3 2020

Ta có :

\(A=\left(1+7+7^2\right)+\left(7^3+7^4+7^5\right)+...+\left(7^{2018}+7^{2019}+7^{2020}\right)\)

\(=\left(1+7+7^2\right)+7^3\left(1+7+7^2\right)+...+7^{2018}\left(1+7+7^2\right)\)

\(=\left(1+7+7^2\right)\left(1+7^3+7^6+...+7^{2018}\right)\)

\(=57\cdot\left(1+7^3+7^6+...+7^{2018}\right)\)

\(=19\cdot3\cdot\left(1+7^3+7^6+...+7^{2018}\right)⋮19\) (đpcm)

6 tháng 3 2020

\(A=1+7+7^2+7^3+...+7^{2019}+7^{2020}\)

\(\Leftrightarrow A=\left(1+7+7^2\right)+\left(7^3+7^4+7^5\right)+....+\left(7^{2018}+7^{2019}+7^{2020}\right)\)

\(\Leftrightarrow A=\left(1+7+49\right)+7^3\left(1+7+49\right)+...+7^{2018}\left(1+7+49\right)\)

\(\Leftrightarrow A=57+7^3\cdot57+...+7^{2018}\cdot57\)

\(\Leftrightarrow A=57\left(1+7^3+....+7^{2018}\right)\)

\(\Leftrightarrow A=3\cdot19\left(1+7^3+...+7^{2018}\right)\)

=> A chia 19 dư 0

27 tháng 11 2017

Dư 1 nha bạn . 

27 tháng 11 2017
các bạn giải chi tiết giúp mik nha
28 tháng 10 2015

Ta có: A=20+21+22+23+…+22009+22010

=>A=(20+21+22)+…+(22008+22009+22010)

=>A=(20+21+22)+…+22008.(20+21+22)

=>A=7+…+22008.7

=>A=(1+…+22008).7 chia hết cho 7

=>A chia hết cho 7

=>A chia 7 dư 0

9 tháng 12 2015

dư 1

hỏi mãi 

1 cau

28 tháng 3 2020

\(\hept{\begin{cases}A=-\frac{1}{2020}-\frac{3}{2019^2}-\frac{5}{2019^3}-\frac{7}{2019^4}^{ }\\B=-\frac{1}{2020}-\frac{7}{2019^2}-\frac{5}{2019^3}-\frac{3}{2019^4}\end{cases}}\)

=>\(A-B=-\frac{1}{2020}-\frac{3}{2019^2}-\frac{5}{2019^3}-\frac{7}{2019^4}+\frac{1}{2020}+\frac{7}{2019^2}+\frac{5}{2019^3}+\frac{3}{2019^4}\)

\(=>A-B=\left(-\frac{3}{2019^2}+\frac{7}{2019^2}\right)+\left(-\frac{7}{2019^4}+\frac{3}{2019^4}\right)\)

=>\(A-B=\frac{4}{2019^2}+-\frac{4}{2019^4}\)

=>\(A-B=\frac{2019^2.4}{2019^4}-\frac{4}{2019^4}\)

=>\(A>B\)

cách này mình tự nghĩ 

28 tháng 3 2020

thank you \(v\text{er}y^{1000000000000}\)much

10 tháng 2 2020

sao ko có ai giúp mk vậy

10 tháng 2 2020

Thật ra tui cũng không rõ lắm đâu. Cậu thử nhân A với \(\dfrac{2019}{2020}\)rồi lại cộng lại với A thử coi nào <Chú Ý : chưa chắc đã đúng >