K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

19 tháng 5 2017

Trước hết ta so sánh 10.A với 10.B từ đó ta \(\Rightarrow\) A < B. Ta có:

\(10.A=\dfrac{-10\left(10^{2011}+1\right)}{10^{2012}+1}=\dfrac{-\left(10^{2011}.10+10\right)}{10^{2012}+1}\)

\(=\dfrac{-\left(10^{2012}+10\right)}{10^{2012}+1}=\dfrac{-\left(10^{2012}+1\right)}{10^{2012}+1}-\dfrac{9}{10^{2012}+1}=-1-\dfrac{9}{10^{2012}+1}\)

Tương tự: \(10.B=-1-\dfrac{9}{10^{2013}+1}\)

Do \(10^{2013}+1>10^{2012}+1,\) nên \(\dfrac{-9}{10^{2013}+1}>\dfrac{-9}{10^{2012}+1}\)

Do đó \(10.A< 10.B,\) tức là \(A< B\)

5 tháng 7 2017

a) \(\frac{2^{10}+1}{2^{10}-1}\)và \(\frac{2^{10}-1}{2^{10}-3}\)

Ta có chính chất phân số trung gian là \(\frac{2^{10}+1}{2^{10}-3}\)

\(\frac{2^{10}+1}{2^{10}-1}>\frac{2^{10}+1}{2^{10}-3}\) ; \(\frac{2^{10}-1}{2^{10}-3}< \frac{2^{10}+1}{2^{10}-3}\)

Vì \(\frac{2^{10}+1}{2^{10}-1}>\frac{2^{10}+1}{2^{10}-3}>\frac{2^{10}-1}{2^{10}-3}\)

Nên \(\frac{2^{10}+1}{2^{10}-1}>\frac{2^{10}-1}{2^{10}-3}\)

b) \(A=\frac{2011}{2012}+\frac{2012}{2013}\)và \(B=\frac{2011+2012}{2012+2013}\)

Ta có : \(A=\frac{2011}{2012}+\frac{2012}{2013}>\frac{2011}{2013}+\frac{2012}{2013}=\frac{2011+2012}{2013}>\frac{2011+2012}{2012+2013}=B\)

Vậy A > B 

Có gì  sai cho sorry

a,

\(\frac{2^{10}+1}{2^{10}-1}=1+\frac{2}{2^{10}-1}< 1+\frac{2}{2^{10}-3}=\frac{2^{10}-1}{2^{10}-3}\)

b,

\(\frac{2011}{2012}+\frac{2012}{2013}>\frac{2011}{2012+2013}+\frac{2012}{2012+2013}=\frac{2011+2012}{2012+2013}\)

15 tháng 1 2017

A < B nha!

9 tháng 2 2018

a/ Áp dụng bất đẳng thức :

\(\dfrac{a}{b}< 1\Leftrightarrow\dfrac{a}{b}< \dfrac{a+m}{b+m}\)

Ta có :

\(\dfrac{10^{2011}+1}{10^{2012}+1}< 1\)

\(\Leftrightarrow\dfrac{10^{2011}+1}{10^{2012}+1}< \dfrac{10^{2011}+1+9}{10^{2012}+1+9}=\dfrac{10^{2011}+10}{10^{2012}+10}=\dfrac{10\left(10^{2010}+1\right)}{10\left(10^{2011}+1\right)}=\dfrac{10^{2010}+1}{10^{2011}+1}\)

\(\Leftrightarrow\dfrac{10^{2011}+1}{10^{2012}+1}< \dfrac{10^{2010}+1}{10^{2011}+1}\)

9 tháng 2 2018

cho mn hỏi cái:\(\dfrac{10^{2011}+1}{10^{2012}+1}< \dfrac{10^{2011}+1+9}{10^{2012}+1+9}\)

1 tháng 7 2016

Áp dụng a/b < 1 => a/b < a+m/b+m (a,b,m thuộc N*)
\(=>B=\frac{10^{2012}+1}{10^{2013}+1}< \frac{10^{2012}+1+9}{10^{2013}+1+9}\)

                                          \(< \frac{10^{2012}+10}{10^{2013}+10}\)

                                          \(< \frac{10.\left(10^{2011}+1\right)}{10.\left(10^{2012}+1\right)}\)

                                          \(< \frac{10^{2011}+1}{10^{2012}+1}=A\)

=> B < A

Ủng hộ mk nha ^_-

19 tháng 4 2017

Bài 1:

Ta có: \(A=\dfrac{2011+2012}{2012+2013}=\dfrac{2011}{2012+2013}+\dfrac{2012}{2012+2013}\)

Dễ thấy:

\(\dfrac{2011}{2012+2013}< \dfrac{2011}{2012};\dfrac{2012}{2012+2013}< \dfrac{2012}{2013}\)

\(\Rightarrow A=\dfrac{2011}{2012+2013}+\dfrac{2012}{2012+2013}< B=\dfrac{2011}{2012}+\dfrac{2012}{2013}\)

Bài 2:

\(S=\dfrac{1}{4\cdot7}+\dfrac{1}{7\cdot10}+...+\dfrac{1}{37\cdot40}\)

\(=\dfrac{1}{3}\left(\dfrac{3}{4\cdot7}+\dfrac{3}{7\cdot10}+...+\dfrac{3}{37\cdot40}\right)\)

\(=\dfrac{1}{3}\left(\dfrac{1}{4}-\dfrac{1}{7}+\dfrac{1}{7}-\dfrac{1}{10}+...+\dfrac{1}{37}-\dfrac{1}{40}\right)\)

\(=\dfrac{1}{3}\left(\dfrac{1}{4}-\dfrac{1}{40}\right)=\dfrac{1}{3}\cdot\dfrac{9}{40}=\dfrac{3}{40}< \dfrac{1}{3}\)

28 tháng 2 2016

So sánh 2 phân số sau  $\frac{10^{2011}+10}{10^{2012}+10}v\text{à}\frac{10^{2012}-10}{10^{2013}-10}$102011+10102012+10 và102012−10102013−10 

kick dzô chữ xanh là được!! OK

28 tháng 2 2016

Ta có : 

10. A = \(\frac{10.\left(10^{2011}+1\right)}{10^{2012}+1}\)

         = \(\frac{10^{2012}+10}{10^{2012}+1}\)

         = \(\frac{10^{2012}+1+9}{10^{2012}+1}\)

         = \(\frac{10^{2012}+1}{10^{2012}+1}-\frac{9}{10^{2012}+1}\)

         = 1 - \(\frac{9}{10^{2012}+1}\)

10 . B = \(\frac{10.\left(10^{2012}+1\right)}{10^{2013}+1}\)

          = \(\frac{10^{2013}+10}{10^{2013}+1}\)

          = \(\frac{10^{2013}+1+9}{10^{2013}+1}\)

          = 1 - \(\frac{9}{10^{2013}+1}\)

Vì \(\frac{9}{10^{2012}+1}\) >\(\frac{9}{10^{2013}+1}\)  nên 10.A > 10.B

=> A >B 

Vậy ...........

20 tháng 3 2017

Áp dụng tính chất \(\dfrac{a}{b}>1\Rightarrow\dfrac{a}{b}< \dfrac{a+m}{b+m}\) ta có:

\(B=\dfrac{10^{2014}+1}{10^{2013}+1}< \dfrac{10^{2014}+1+9}{10^{2013}+1+9}\)

\(=\dfrac{10^{2014}+10}{10^{2013}+10}=\dfrac{10\left(10^{2013}+1\right)}{10\left(10^{2012}+1\right)}=\dfrac{10^{2013}+1}{10^{2012}+1}\)

\(\Rightarrow\dfrac{10^{2014}+1}{10^{2013}+1}< \dfrac{10^{2013}+1}{10^{2012}+1}\)

Hay \(A< B\)

20 tháng 3 2017

Chết Chết! Nhầm rồi! Học lâu quá quên!

Sửa lại:

Cái tượng đề đầu tiên phải là:

Áp dụng tính chất \(\dfrac{a}{b}>1\Rightarrow\dfrac{a}{b}>\dfrac{a+m}{b+m}\)

Còn phần sau thì chuyển dấu \(< \rightarrow>\)

Kết luận là \(A>B\)