Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\hept{\begin{cases}\left(a^3-3ab^2\right)^2=25\\\left(b^3-3a^2b\right)^2=100\end{cases}}\Leftrightarrow\hept{\begin{cases}a^6-6a^4b^2+9a^2b^4=25\\b^6-6a^2b^4+9a^4b^2=100\end{cases}}\)
Cộng 2 đẳng thức lại ta được:
\(a^6+3a^4b^2+3a^2b^4+b^6=125\Leftrightarrow\left(a^2+b^2\right)^3=125\Leftrightarrow a^2+b^2=5\)
\(\Rightarrow P=2018\left(a^2+b^2\right)=2018.5=...\)
Ta có : \(a^3-3ab^2=5\)
\(\Rightarrow\left(a^3-3ab^2\right)^2=a^6-6a^4b^2+9a^2b^4=25\)
Và \(b^3-3a^2b=10\)
\(\Rightarrow\left(b^3-3a^2b\right)^2=b^6-6a^4b^2+9a^4b^2=100\)
Suy ra : \(a^6++3a^2b^4+3a^4b^2+b^6=125\)
Hoặc : \(\left(a^2+b^2\right)^3=125\Rightarrow a^2+b^2=5\)
Do đó : \(P=2018a^2+2018b^2=2018\left(a^2+b^2\right)=2018.5=10090\)
Ta có \(\left(a^3-3ab^2\right)^2\) =\(a^6-6a^4b^2+9a^2b^4=25\)
\(\left(b^3-3a^2b\right)^2=b^6-6a^2b^4+9a^4b^2=100\)
\(=>\left(a^3-3a^2b\right)^2-\left(b^3-3a^2b\right)^2=a^6-6a^4b^2+9a^2b^4+b^6-6a^2b^4+9a^4b^2=125\)
\(< =>a^6+3a^4b^2=3a^2b^4+b^6=125\)
\(< =>\left(a^2+b^2\right)^3=125\)
\(=>a^2+b^2=5\)
1) \(\left(a+b\right)^3=\left(a+b\right)\left(a+b\right)^2=\left(a+b\right)\left(a^2+2ab+b^2\right)\)
\(=a^3+2a^2b+ab^2+a^2b+2ab^2+b^3\)
\(=a^3+3a^2b+3ab^2+b^3\)
2) \(\left(a-b\right)^3=\left(a-b\right)\left(a-b\right)^2=\left(a-b\right)\left(a^2-2ab+b^2\right)\)\(=a^3-2a^2b+ab^2-a^2b+2ab^2-b^3\)
\(=a^3-3a^2b+3ab^2-b^3\)
Ta có : \(a^3-3ab^2=5\Rightarrow\left(a^3-3ab^2\right)^2\)\(=25\Rightarrow a^6-6a^4b^2+9a^2b^4=25\)
\(b^3-3a^2b=10\Rightarrow\left(b^3-3a^2b\right)^2=100\)\(\Rightarrow b^6-6a^2b^4+9a^4b^2=100\)
Cộng hai vế ta được :
\(a^6-6a^4b^2+9a^2b^4+b^6-6a^2b^4+9a^4b^2=125\)
\(\Rightarrow a^6+3a^4b^2+3a^2b^4+b^6=125\)
\(\Rightarrow\left(a^2+b^2\right)^3=125\)
\(\Rightarrow\left(a^2+b^2\right)^3=5^3\)
\(\Rightarrow a^2+b^2=5\)
\(\Rightarrow\frac{a^2+b^2}{2018}=\frac{5}{2018}\)
Chúc bạn học tốt ^^
Ta có : \(\left(a^2+b^2\right)^3=a^6+3a^4b^2+3a^2b^4+b^6\)
\(=\left(a^6-6a^4b^2+9a^2b^4\right)+\left(b^6-6a^2b^4+9a^4b^2\right)\)
\(=\left(a^3-3ab^2\right)^2+\left(b^3-3a^2b\right)^2\)
\(=5^2+10^2\)
\(=125\)
\(\Rightarrow S^3=125\)
\(\Rightarrow S=5\)
Ta có: \(a^3-3ab^2=2\)
\(\Rightarrow\left(a^3-3ab^2\right)^2=4\)
\(\Leftrightarrow a^6-6a^4b^2+9a^2b^4=4\left(1\right)\)
Lại có: \(b^3-3a^2b=-11\)
\(\Rightarrow\left(b^3-3a^2b\right)=121\)
\(\Leftrightarrow b^6-6a^2b^4+9a^4b^2=121\left(2\right)\)
Lấy \(\left(1\right)+\left(2\right)\)ta được:
\(a^6-6a^4b^2+9a^2b^4+b^6-6a^2b^4+9a^4b^2=125\)
\(\Leftrightarrow a^6+3a^4b^2+b^6+3a^2b^4=125\)
\(\Leftrightarrow\left(a^2+b^2\right)^3=125\)
\(\Leftrightarrow a^2+b^2=5\)
Vậy ...
+) a3 - 3ab2 = 5 \(\Leftrightarrow\) (a3 - 3ab2)2 = 25 \(\Leftrightarrow\) a6 - 6a4b2 + 9a2b4 = 25
+) b3 - 3a2b = 10 \(\Leftrightarrow\) (b3 - 3a2b)2 = 100 \(\Leftrightarrow\) b6 - 6a2b4 + 9a4b2 = 100
\(\Leftrightarrow\) a6 + b6 + 3a2b4 + 3a4b2 = 125
\(\Leftrightarrow\) (a2 + b2)3 = 125
\(\Leftrightarrow\) a2 + b2 = 5
Ta có:
S = 2019a2 + 2019b2
= 2019(a2 + b2)
= 2019 . 5
= 10095
Vậy S = 10095
Chúc bạn học tốt!
\(2a^2+b^2=3ab\Leftrightarrow2a^2-3ab+b^2=0\Leftrightarrow\left(2a-b\right)\left(a-b\right)=0\)
\(\Leftrightarrow a-b=0\left(2a-b>0\right)\Leftrightarrow a=b\)
\(P=\frac{3a^2+2a^2}{5a^2-3a^2}=\frac{5a^2}{2a^2}=\frac{5}{2}\)
Ta có:\(\left(a^3-3ab^2\right)^2=5^2\)
\(\Leftrightarrow a^6-6a^4b^2+9a^2b^4=25\)
\(\left(b^3-3a^2b\right)^2=10^2\)
\(\Leftrightarrow b^6-6a^2b^4+9a^4b^2=100\)
\(\left(a^3-3ab^2\right)^2+\left(b^3-3a^2b\right)^2=25+100\)
\(\Leftrightarrow a^6-6a^4b^2+9a^2b^4+a^6-6a^2b^4+9a^4b^2=125\)
\(\Leftrightarrow a^6+3a^4b^2+3a^2b^4+b^6=125\)
\(\Leftrightarrow\left(a^2+b^2\right)^3=5^3\)
\(\Leftrightarrow a^2+b^2=5\)
\(\)