K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

12 tháng 10 2021

\(5x^2-4xy+y^2-4x+4=0\)

\(\Leftrightarrow\left(4x^2-4xy+y^2\right)+\left(x^2-4x+4\right)=0\)

\(\Leftrightarrow\left(2x-y\right)^2+\left(x-2\right)^2=0\)

Do \(\left(2x-y\right)^2,\left(x-2\right)^2\ge0\forall x,y\)

\(\Rightarrow\left\{{}\begin{matrix}2x-y=0\\x-2=0\end{matrix}\right.\)\(\Leftrightarrow\left\{{}\begin{matrix}x=2\\y=4\end{matrix}\right.\)

\(A=\left(x-1\right)^3+\left(y+2\right)^3=\left(2-1\right)^3+\left(4+2\right)^3\)

\(=1+6^3=217\)

12 tháng 10 2021

MẤY BẠN GIÚP MK VS Ạ AI NHANH MK VOTE NHA

29 tháng 6 2017

Biến đổi các biểu thức hữu tỉ. Giá trị của phân thức

Biến đổi các biểu thức hữu tỉ. Giá trị của phân thức

1 tháng 11 2018

A/\(\left(2x^3+y^2-7xy\right)4xy^2.\)

\(=8x^4y^2+4xy^4-28x^2y^3\)

B/\(\left(2x^3-x-1\right)\left(5x-2\right)\)

\(=10x^4-5x^2-5x-4x^3+2x+2\)

\(=10x^4-5x^3-3x-4x^3+2\)

C/\(\left(2x^2-3\right)\left(4x^4+6x^2+9\right)\)

\(=\left(2x^2-3\right)\left(2x+3\right)^2\)

D/\(\left(3x^2-2y\right)^3-\left(2x^2-y\right)^3\)

( Bài này áp dụng hằng đẳng thức là làm được ạ )

a, \(=12x^5+9x^3y^2-6x^2y^3-20x^4y-15x^2y^3-10xy^4-24x^3y^2-18xy^4+12y^5\)

(tự rút gọn cái :P)

b, \(8x^3+4x^2y-2xy^2-y^3\)

\(=4x^2\left(2x+y\right)-y^2\left(2x+y\right)=\left(2x+y\right)^2\left(2x-y\right)\)

\(4x^2y^2-4x^2-4xy-y^2=4x^2y^2-\left(2x+y\right)^2\)

\(=\left(2x+y+2xy\right)\left(2xy-2x+y\right)\)

Mấy cái còn lại nhân tung ra là được mà :))))

21 tháng 2 2020

làm luôn đi cậu

18 tháng 5 2019

\(\frac{3x^4-8x^3-10x^2+8x-5}{3x^2-2x+1}\)

\(=\frac{x^2\left(3x^2-2x+1\right)-2x\left(3x^2-2x+1\right)-5\left(3x^2-2x+1\right)}{3x^2-2x+1}\)

\(=\frac{\left(3x^2-2x+1\right)\cdot\left(x^2-2x-5\right)}{3x^2-2x+1}\)

\(=x^2-2x-5\)

18 tháng 5 2019

\(\frac{2x^3-9x^2+19x-15}{x^2-3x+5}\)

\(=\frac{2x\left(x^2-3x+5\right)-3\left(x^2-3x+5\right)}{x^2-3x+5}\)

\(=\frac{\left(x^2-3x+5\right)\left(2x-3\right)}{x^2-3x+5}\)

\(=2x-3\)

7 tháng 11 2017

1)

a) \(\dfrac{5x}{10}=\dfrac{x}{2}\)

b) \(\dfrac{4xy}{2y}=2x\left(y\ne0\right)\)

c) \(\dfrac{21x^2y^3}{6xy}=\dfrac{7xy^2}{2}\left(xy\ne0\right)\)

d) \(\dfrac{2x+2y}{4}=\dfrac{2\left(x+y\right)}{4}=\dfrac{x+y}{2}\)

e) \(\dfrac{5x-5y}{3x-3y}=\dfrac{5\left(x-y\right)}{3\left(x-y\right)}=\dfrac{5}{3}\left(x\ne y\right)\)

f) \(\dfrac{-15x\left(x-y\right)}{3\left(y-x\right)}=-5x\dfrac{x-y}{y-x}=-5x\dfrac{x-y}{-\left(x-y\right)}\)

\(=-5x.\left(-1\right)=5x\left(x\ne y\right)\)

2)

a) Nhớ ghi ĐK vào nhá, lười quá :V\(\dfrac{x^2-16}{4x-x^2}=-\dfrac{\left(x-4\right)\left(x+4\right)}{x^2-4x}=\dfrac{\left(x-4\right)\left(x+4\right)}{x\left(x-4\right)}=\dfrac{x+4}{x}\)

b) \(\dfrac{x^2+4x+3}{2x+6}=\dfrac{x^2+3x+x+3}{2\left(x+3\right)}=\dfrac{x\left(x+3\right)+\left(x+3\right)}{2\left(x+3\right)}\)

\(=\dfrac{\left(x+3\right)\left(x+1\right)}{2\left(x+3\right)}=\dfrac{x+1}{2}\)

c) \(\dfrac{15x\left(x+3\right)^3}{5y\left(x+y\right)^2}=\dfrac{3x\left(x+3\right)^3}{y\left(x+y\right)^2}\) ( câu này có gì đó sai sai )

d) \(\dfrac{5\left(x-y\right)-3\left(y-x\right)}{10\left(x-y\right)}=\dfrac{5\left(x-y\right)+3\left(x-y\right)}{10\left(x-y\right)}\)

\(=\dfrac{8\left(x-y\right)}{10\left(x-y\right)}=\dfrac{8}{10}=\dfrac{4}{5}\)

e) \(\dfrac{2x+2y+5x+5y}{2x+2y-5x-5y}=\dfrac{2\left(x+y\right)+5\left(x+y\right)}{2\left(x+y\right)-5\left(x+y\right)}\)

\(=\dfrac{7\left(x+y\right)}{-3\left(x+y\right)}=-\dfrac{7}{3}\)

4 tháng 11 2018

Thực hiện phép tính:

a,(2x3+y2−7xy).4xy2a,(2x3+y2−7xy).4xy2

=>2x3.4xy2+y2.4xy2-7xy.4xy2

=>8x4y2+4xy4-28x2y3

b,(2x3−x−1)(5x−2)

=>10x4-4x3-5x2-3x+2

16 tháng 11 2022

c: =(2x^2-3)[(2x^2)^2+2x^2*3+3^2]

=8x^6-27

d:\(=\left(3x^2-2y-2x^2+y\right)\left(9x^4-12x^2y+4y^2+6x^4-3x^2y-4x^2y+2y^2+4x^4-4x^2y+y^2\right)\)

\(=\left(x^2-y\right)\left(19x^4-23x^2y+7y^2\right)\)

Ta có : \(4x^2+2y^2+2z^2-4xy-4zx+2yz-6y-10z+34=0\)

\(\Rightarrow\left(4x^2+y^2+z^2-4xy-4zx+2yz\right)+\left(y^2-6y+9\right)+\left(z^2-10z+25\right)=0\)

\(\Rightarrow\left(2x-y-z\right)^2+\left(y-3\right)^2+\left(z-5\right)^2=0\)

Vì \(\hept{\begin{cases}\left(2x-y-z\right)^2\ge0\forall x,y,z\\\left(y-3\right)^2\ge0\forall y\\\left(z-5\right)^2\ge0\forall z\end{cases}}\)

\(\Rightarrow\hept{\begin{cases}\left(2x-y-z\right)^2=0\\\left(y-3\right)^2=0\\\left(z-5\right)^2=0\end{cases}}\)

\(\Rightarrow\hept{\begin{cases}2x-y-z=0\\y-3=0\\z-5=0\end{cases}}\)

\(\Rightarrow\hept{\begin{cases}2x-3-5=0\\y=3\\z=5\end{cases}}\)

\(\Rightarrow\hept{\begin{cases}2x=8\\y=3\\z=5\end{cases}}\)\(\Rightarrow\hept{\begin{cases}x=4\\y=3\\z=5\end{cases}}\left(1\right)\)

Lại có : \(S=\left(x-4\right)^{2017}+\left(y-4\right)^{2017}+\left(z-4\right)^{2017}\)

Thay \(\left(1\right)\)vào \(S\),ta được :

\(S=0^{2017}+\left(-1\right)^{2017}+1^{2017}\)

    \(=0-1+1=0\)

Vậy \(S=0\)

26 tháng 10 2019

3) 5x2 + y2 -4xy - 2y + 8x + 2013

= ( 4x2 + y2 -4xy -2y + 8x ) + x2 + 2013

= ( 2x - y +1)2 + x2 +2013

Vì ( 2x-y+1)2 \(\ge\)\(\forall x,y\); x2 \(\ge\)0\(\forall x\)

=> (2x - y+1)2 + x2 \(\ge\)0

=> ( 2x-y +1)2 +x2 + 2013\(\ge\)0

hay  A \(\ge0\)\(\forall x,y\)=> A ko âm

26 tháng 10 2019

Giúp mk phần 1 và phần 2 vs!!!

HELP ME PLEASE!!!