Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có: \(\left(x^2+y^2+2xy+2yz+2xz\right)+\left(x^2-2xy+y^2\right)+\left(x^2-2xz+z^2\right)=3\)
\(\Rightarrow\left(x+y+z\right)^2+\left(x-y\right)^2+\left(x-z\right)^2=3\)
\(\Rightarrow\left(x+y+z\right)^2\le3\)
Dấu "=" xảy ra <=> x=y=z
Do đó \(-\sqrt{3}\le x+y+z\le\sqrt{3}\)
\(\Rightarrow-\sqrt{3}\le A\le\sqrt{3}\)
=> \(\hept{\begin{cases}Min_A=-\sqrt{3}\Leftrightarrow x=y=z=\frac{-\sqrt{3}}{3}\\Max_A=\sqrt{3}\Leftrightarrow x=y=z=\frac{\sqrt{3}}{3}\end{cases}}\)
Áp dụng bđt AM-GM:
\(x^2y^2+y^2z^2\ge2\sqrt{x^2y^4z^2}=2xy^2z\)
\(y^2z^2+z^2x^2\ge2\sqrt{x^2y^2z^{^4}}=2xyz^2\)
\(x^2y^2+z^2x^2\ge2\sqrt{x^4y^2z^2}=2x^2yz\)
Cộng theo vế và rút gọn: \(x^2y^2+y^2z^2+z^2x^2\ge x^2yz+xy^2z+xyz^2\)
\(\Leftrightarrow x^2y^2+y^2z^2+z^2x^2-x^2yz-xy^2z-xyz^2\ge0\left(đpcm\right)\)
\(\left(xy-yz\right)^2=x^2y^2-2xy^2z+y^2z^2\ge0\)
\(\Rightarrow x^2y^2+y^2z^2\ge2xy^2z\)
Thiết lập hai BĐT còn tại tương tự và cộng theo vế và chia cho 2:
\(x^2y^2+y^2z^2+z^2x^2\ge x^2yz+y^2xz+z^2xy\)
Chuyển vế ta có đpcm.
Dấu "=" xảy ra khi \(xy=yz=zx\Leftrightarrow x=y=z\)
2.
A = xy + 2yz + 3xz = xy + xz + 2yz + 2xz = x(y + z) + 2z(y + z)
Áp dụng BĐT: (a+b)^2/4 ≥ ab dấu = khi a = b
Ta có:
(x + y + z)^2/4 ≥ x(y + z)
(x+ y +z)^2/4 ≥ z(y + z)
=> A ≤ 3(x + y + z)^2/4 = 3.36/4 = 27
=> A max = 27 xảy ra khi:
{x = y + z
{z = y + z
<=> y = 0 và x = z = 3