Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(2^x=2^{3\left(y+1\right)}\Rightarrow x=3y+3\)
\(3^{2y}\Rightarrow3^{x-9}\Rightarrow2y=x-9\Rightarrow x=2y+9\)
\(\Rightarrow3y+3=2y+9\Rightarrow y=6\Rightarrow x=21\Rightarrow x+y=27\)
Ta có:\(2^x=8^{y+1}\Rightarrow2^x=2^{3\left(y+1\right)}\Rightarrow2^x=2^{3y+3}\Rightarrow x=3y+3\)
\(\Rightarrow9^y=3^{x-9}\Rightarrow3^{2y}=3^{3y+3-9}\Rightarrow3^{2y}=3^{3y-6}\Rightarrow2y=3y-6\)
\(\Rightarrow2y-3y=-6\Rightarrow-y=-6\Rightarrow y=6\)
\(\Rightarrow x=6\cdot3+3=21\)
\(\Rightarrow x+y=21+6=27\)
\(2x=8^{\left(y+1\right)}=2^{3\left(y+1\right)}\Rightarrow x=3y+3\) ( 1 )
\(9y=3^{2y}=3^{x-9}\Rightarrow2y=x-9\) ( 2 )
\(x+2y=3y+3+x-9\)
\(y=6\)
\(x=3.6+3=21\)
\(\Rightarrow x+y=27\)
Nếu có j thì nói nha ( giúp thì nói t giải cho )
\(\dfrac{x-2}{2}=\dfrac{y-4}{3}=\dfrac{z-8}{5}\)
\(\Rightarrow\dfrac{x-2}{2}+2=\dfrac{y-4}{3}+2=\dfrac{z-8}{5}+2\)
\(\Rightarrow\dfrac{x+2}{2}=\dfrac{y+2}{3}=\dfrac{z+2}{5}\)
\(\Rightarrow\left(\dfrac{x+2}{2}\right)^2=\left(\dfrac{y+2}{3}\right)^2=\left(\dfrac{z+2}{5}\right)^2\)
\(\Rightarrow\dfrac{\left(x+2\right)^2}{4}=\dfrac{\left(y+2\right)^2}{9}=\dfrac{\left(z+2\right)^2}{25}\)
Áp dụng t/c dãy tỉ số bằng nhau ta có :
\(\dfrac{\left(x+2\right)^2}{4}=\dfrac{\left(y+2\right)^2}{9}=\dfrac{\left(z+2\right)^2}{25}=\dfrac{3.\left(y+2\right)^2}{27}\dfrac{\left(x+2\right)^2+3\left(y+2\right)^2-\left(z+2\right)^2}{4+27-25}=\dfrac{24}{6}=4\)\(\Rightarrow\left\{{}\begin{matrix}\left(x+2\right)^2=16\\\left(y+2\right)^2=36\\\left(z+2\right)^2=100\end{matrix}\right.\)
Bạn chia trường hợp rồi tìm x,y,z nhé
2x = 8y+1 <=> 2x = ( 23 )y+1 = 23y+3
=> x = 3y + 3 (1)
9y = 3x-9 <=> 32.y = 3x-9
=> 2y = x - 9 => x = 2y + 9 (2)
Từ (1); (2) => 3y + 3 = 2y + 9
<=> 3y - 2y = 9 - 3=> y = 6
=> 2.6 = x - 9 <=> 12 = x - 9 => x = 21
=> x + y = 21 + 6 = 27
\(A=x^2+4x^4\)
\(\Rightarrow A=\left(2x^2\right)^2+4x^3+\left(x\right)^2-4x^3\)
\(\Rightarrow\left(2x^2+x\right)^2-4x^3\)
=> Ko là số chính phương
\(B=y^2-12y+36\)
\(B=y^2-2.6y+6^2\)
\(\Rightarrow B=\left(y-6\right)^2\)
=> Là số chính phương
Ta có:
\(2^x=8^{y+1}\Rightarrow2^x=2^{3\left(y+1\right)}\Rightarrow x=3\left(y+1\right)\) (1)
\(9^y=3^{x-9}\Rightarrow3^{2y}=3^{x-9}\Rightarrow2y=x-9\) (2)
Thay (1) vào (2) ta có:
\(2y=3y+3-9\\ 2y=3y-6\\ 2y-3y=-6\\ -y=6\\ \Rightarrow y=6\)
Thay \(y=6\) vào \(2y=x-9\), ta có:
\(26=x-9\\ \Rightarrow x=26+9\\ \Rightarrow x=35\)
\(\Rightarrow x+y=6+35=41\)
Vậy: \(x+y=41\)
Mình nhầm, xin lỗi
Chỗ mà thay y=6 vào 2y = x-9 á, đổi 26 = x - 9 thành: 2.6 = x - 9 nha! Phần còn lại mình nghĩ bạn tự tính cũng được :)