Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
4/ Xét hiệu: \(P-2\left(ab+7bc+ca\right)\)
\(=5a^2+11b^2+5c^2-2\left(ab+7bc+ca\right)\)
\(=\frac{\left(5a-b-c\right)^2+6\left(3b-2c\right)^2}{5}\ge0\)
Vì vậy: \(P\ge2\left(ab+7bc+ca\right)=2.188=376\)
Đẳng thức xảy ra khi ...(anh giải nốt ạ)
@Cool Kid:
Bài 5: Bản chất của bài này là tìm k (nhỏ nhất hay lớn nhất gì đó, mình nhớ không rõ nhưng đại khái là chọn k) sao cho: \(5a^2+11b^2+5c^2\ge k\left(ab+7bc+ca\right)\)
Rồi đó, chuyển vế, viết lại dưới dạng tam thức bậc 2 biến a, b, c gì cũng được rồi tự làm đi:)
Áp dụng BĐT Bu nhi a có:
(a+b+c)2 \(\le\) (a2 + b2 +c2)(12 +12 +12) = 22.3 = 66
=> a + b + c \(\le\) \(\sqrt{66}\)
Vậy max(a+b+c) = \(\sqrt{66}\) khi a = b = c
mà a2 + b2 +c2 = 22 =>a2 = b2 = c2 = \(\frac{22}{3}\)
=> a = b = c = \(\sqrt{\frac{22}{3}}\)
Gỉa thiết đã cho có thể viết lại thành
(a/2)2+(b/2)2+(c/2)2+2.a/2.b/2.c/2=1
Từ đó suy ra 0<a/2,b/2,c/2≤1.
Như vậy tồn tại A,B,Cthỏa A+B+C=πA+B+C=r và a/2=cosA,b/2=cosB,c/2=cosC.
Từ một BĐT cơ bản cosA+cosB+cosC≤3/2
ta có ngay a+b+c≤3
<=> a^2+b^2+c^2 =< 3^2 =< 9
ta có:\(0\le a\le3\Rightarrow a\left(a-3\right)\le0\)
\(\Rightarrow a^2-3a\le0\)
C/m tương tư ta đc: \(b^2-3b\le0\)
\(c^2-3c\le0\)
\(\Rightarrow a^2+b^2+c^2-3\left(a+b+c\right)\le0\)
\(\Leftrightarrow a^2+b^2+c^2\le3.4=12\) (vì a+b+c=4)
Lời giải:
Không mất tổng quát, giả sử \(c=\max(a,b,c)\Rightarrow 6=a+b+c\leq 3c\Rightarrow c\geq 2\)
Ta có:
\(P=a^2+b^2+c^2=(a+b+c)^2-2(ab+bc+ac)=36-2(ab+bc+ac)\)
Vì \(a,b,c\geq 1\Rightarrow (a-1)(b-1)\geq 0\)
\(\Rightarrow ab\geq a+b-1\)
\(\Rightarrow ab+bc+ac\geq a+b-1+bc+ac\)
\(\Rightarrow ab+bc+ac\geq 6-c-1+c(6-c)\)
\(\Rightarrow ab+bc+ac\geq 11-(c^2-5c+6)\)
\(\Rightarrow ab+bc+ac\geq 11-(c-2)(c-3)\)
Vì \(3\geq c\geq 2\Rightarrow (c-2)(c-3)\leq 0\Rightarrow 11-(c-2)(c-3)\geq 11\)
Do đó: \(ab+bc+ac\geq 11\Rightarrow P=36-2(ab+bc+ac)\leq 14\)
Vậy \(P_{\max}=14\Leftrightarrow (a,b,c)=(3,2,1)\) và các hoán vị.
thks nhiều