Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Vì xy + yz + zx = 1 ta có :
\(\frac{x-y}{z^2+1}+\frac{y-z}{x^2+1}+\frac{z-x}{y^2+1}=\frac{x-y}{z^2+xy+yz+zx}+\frac{y-z}{x^2+xy+yz+zx}+\frac{z-x}{y^2+xy+yz+zx}\)
\(=\frac{x-y}{\left(y+z\right)\left(z+x\right)}+\frac{y-z}{\left(x+y\right)\left(x+z\right)}+\frac{z-x}{\left(y+z\right)\left(x+y\right)}\)
\(=\frac{\left(x-y\right)\left(x+y\right)+\left(y-z\right)\left(y+z\right)+\left(x+z\right)\left(z-x\right)}{\left(x+y\right)\left(y+z\right)\left(z+x\right)}\)
\(=\frac{x^2-y^2+y^2-z^2+z^2-x^2}{\left(x+y\right)\left(y+z\right)\left(z+x\right)}=\frac{0}{\left(x+y\right)\left(y+z\right)\left(z+x\right)}=0\)(ĐPCM)
ĐK: x;y;z\(\ne0\)
a + b + c = => (a + b + c)2 = 1
=> a2 + b2 + c2 + 2(ab + bc + ca) = 1
Theo đề bài lại có: a2 + b2 + c2 = 1
Do đó 2(ab + bc + ca) = 0
<=> ab + bc + ca = 0
Ta có: \(\frac{a}{x}=\frac{b}{y}=\frac{c}{z}\)\(\Rightarrow\frac{a^2}{x^2}=\frac{ab}{xy}=\frac{bc}{yz}=\frac{ac}{xz}\) (*)
+ Nếu xy + yz + xz = 0, ta có đpcm
+ Nếu \(xy+yz+xz\ne0\)
Áp dụng t/c của dãy tỉ số = nhau ta có:
\(\frac{a^2}{x^2}=\frac{ab}{xy}=\frac{bc}{yz}=\frac{ca}{xz}=\frac{ab+bc+ca}{xy+yz+xz}=0\)\(\Rightarrow a=b=c=0\)
=> a + b + c = 0, mâu thuẫn với đề
Vậy ta có đcpm
ta có : xy + yz +zx = 0
* yz = -xy-zx
\(\Rightarrow\)*xy = - yz - zx
*zx= -xy-yz
ta có : M = \(\frac{xy}{z}+\frac{zx}{y}+\frac{yz}{x}\)
M = \(\frac{-yz-zx}{z}+\frac{-xy-yz}{y}+\frac{-xy-zx}{x}\)
M = \(\frac{z\times\left(-y-x\right)}{z}+\frac{y\times\left(-x-z\right)}{y}+\frac{x\times\left(-y-z\right)}{x}\)
M = -y - x - x - z - y - z
M = -2y - 2x - 2z
M = -2( x+y+z )
mà x+y+z=-1
M = (-2) . (-1)
M =2
\(0\le x,y,z\le1\) nên \(\left(x,y,z\right)=\left(0,0,0\right);\left(0,0,1\right);\left(0,1,0\right);\left(1,0,0\right);\left(1,0,1\right);\left(0,1,1\right);\left(1,1,1\right);\left(1,1,0\right)\)
thay các giá trị trên vào bt \(x+y+z-xy-yz-xz\) đều thấy t/mãn nó \(\le1\)
ko chắc vì đề chưa cho x,y,z nguyên
\(M=\frac{xy}{z}+\frac{yz}{x}+\frac{zx}{y}\)
\(=\frac{x^2y^2+y^2z^2+z^2x^2}{xyz}\)
\(=\frac{\left(xy+yz+zx\right)^2-2x^2yz-2xyz^2-2x^2yz}{xyz}\)
\(=\frac{0-2xyz\left(x+y+z\right)}{xyz}\)
\(=0-2\left(x+y+z\right)\)
\(=0-2.\left(-1\right)=0-\left(-2\right)=2\)
Chúc bạn học tốt.
Theo đề bài ta có:
\(\left\{\begin{matrix}x\ge xy\\y\ge yz\\z\ge xz\end{matrix}\right.\)\(\Rightarrow\left\{\begin{matrix}x-xy\ge0\\y-yz\ge0\\z-xz\ge0\end{matrix}\right.\)
\(\Rightarrow x+y+z-xy-yz-xz\ge0\)
Xét tích
\(\left(1-x\right)\left(1-y\right)\left(1-z\right)=-\left(x+y+z-xy-yz-xz-1+xyz\right)\ge0\)
\(\Rightarrow x+y+z-xy-yz-xz\le1-xyz\)
\(0\le xyz\le1\) nên \(1-xyz\le1\)
Vậy \(x+y+z-xy-yz-xz\le1\)