K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

NV
31 tháng 5 2020

\(C=\frac{1}{28}\left(12-4x\right)\left(7-7y\right)\left(4x+7y\right)\)

\(C\le\frac{1}{28}\left(\frac{12-4x+7-7y+4x+7y}{3}\right)^3=\frac{6859}{756}\)

\(C_{max}=\frac{6859}{756}\) khi \(\left\{{}\begin{matrix}12-4x=4x+7y\\7-7y=4x+7y\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}x=\frac{17}{12}\\y=\frac{2}{21}\end{matrix}\right.\)

NV
12 tháng 2 2020

\(A=\frac{1}{6}\left(6-2x\right)\left(12-3y\right)\left(2x+3y\right)\)

\(A\le\frac{1}{6}\left(\frac{6-2x+12-3y+2x+3y}{3}\right)^3=36\)

Dấu "=" xảy ra khi \(\left\{{}\begin{matrix}x=0\\y=2\end{matrix}\right.\)

\(A=\frac{\frac{ab}{\sqrt{2}}\sqrt{2\left(c-2\right)}+\frac{bc}{\sqrt{3}}\sqrt{3\left(a-3\right)}+\frac{ca}{2}\sqrt{4\left(b-4\right)}}{abc}\)

\(A\le\frac{\frac{abc}{2\sqrt{2}}+\frac{abc}{2\sqrt{3}}+\frac{abc}{4}}{abc}=\frac{1}{2\sqrt{2}}+\frac{1}{2\sqrt{3}}+\frac{1}{4}\)

Dấu "=" xảy ra khi \(\left\{{}\begin{matrix}a=6\\b=8\\c=4\end{matrix}\right.\)

11 tháng 11 2016

Từ bđt Cauchy : \(a+b\ge2\sqrt{ab}\) ta suy ra được \(ab\le\frac{\left(a+b\right)^2}{4}\)

Áp dụng vào bài toán của bạn :

a/ \(y=\left(x+3\right)\left(5-x\right)\le\frac{\left(x+3+5-x\right)^2}{4}=...............\)

b/ Tương tự

c/ \(y=\left(x+3\right)\left(5-2x\right)=\frac{1}{2}.\left(2x+6\right)\left(5-2x\right)\le\frac{1}{2}.\frac{\left(2x+6+5-2x\right)^2}{4}=.............\)

d/ Tương tự

e/ \(y=\left(6x+3\right)\left(5-2x\right)=3\left(2x+1\right)\left(5-2x\right)\le3.\frac{\left(2x+1+5-2x\right)^2}{4}=.......\)

f/ Xét \(\frac{1}{y}=\frac{x^2+2}{x}=x+\frac{2}{x}\ge2\sqrt{x.\frac{2}{x}}=2\sqrt{2}\)

Suy ra \(y\le\frac{1}{2\sqrt{2}}\)

..........................

g/ Đặt \(t=x^2\) , \(t>0\) (Vì nếu t = 0 thì y = 0)

\(\frac{1}{y}=\frac{t^3+6t^2+12t+8}{t}=t^2+6t+\frac{8}{t}+12\)

\(=t^2+6t+\frac{8}{3t}+\frac{8}{3t}+\frac{8}{3t}+12\)

\(\ge5.\sqrt[5]{t^2.6t.\left(\frac{8}{3t}\right)^3}+12=.................\)

Từ đó đảo ngược y lại rồi đổi dấu \(\ge\) thành \(\le\)

 

 

14 tháng 5 2020

\(P=6x^2-x^3+6y^2-y^3+\frac{x+y}{xy}-x^2y-xy^2\)

\(x^3+y^3=\left(x+y\right)\left(x^2-xy+y^2\right)\le6\left(x^2-xy+y^2\right)\)

\(\Rightarrow-\left(x^3+y^3\right)\ge-6x^2-6y^2+6xy\)

\(\Rightarrow P\ge6xy+\frac{x+y}{xy}-xy\left(x+y\right)\)

\(\Rightarrow P\ge\frac{x+y}{xy}=\frac{1}{y}+\frac{1}{x}\ge\frac{4}{x+y}\ge\frac{2}{3}\)

\("="\Leftrightarrow x=y=3\)

16 tháng 5 2020

Tag bị với hiệu hoá rồi, tag nữa cũng ko được đâu bạn :)) Bạn vô ib trực tiếp ý :))

6 tháng 4 2016

\(\left(x^3+y^3\right)\left(x+y\right)=xy\left(1-x\right)\left(1-y\right)\Leftrightarrow\left(\frac{x^2}{y}+\frac{y^2}{x}\right)\left(x+y\right)=\left(1-x\right)\left(1-y\right)\left(1\right)\)

Ta có : \(\left(\frac{x^2}{y}+\frac{y^2}{x}\right)\left(x+y\right)\ge4xy\)

và \(\left(1-x\right)\left(1-y\right)=1-\left(x+y\right)+xy\le1-2\sqrt{xy}+xy\)

\(\Rightarrow1-2\sqrt{xy}+xy\ge4xy\Leftrightarrow0\) <\(xy\le\frac{1}{9}\)

Dễ chứng minh : \(\frac{1}{1+x^2}+\frac{1}{1+y^2}\le\frac{1}{1+xy};\left(x,y\in\left(0;1\right)\right)\)

\(\frac{1}{\sqrt{1+x^2}}+\frac{1}{\sqrt{1+y^2}}\le\sqrt{2\left(\frac{1}{1+x^2}+\frac{1}{1+y^2}\right)}\le\sqrt{2\left(\frac{2}{1+xy}\right)}=\frac{2}{\sqrt{1+xy}}\)

\(3xy-\left(x^2+y^2\right)=xy-\left(x-y\right)^2\le xy\)

\(\Rightarrow P\le\frac{2}{\sqrt{1+xy}}+xy=\frac{2}{\sqrt{1+t}}+t\)\(\left(t=xy\right)\), (0<\(t\le\frac{1}{9}\)

Xét hàm số :

\(f\left(t\right)=\frac{2}{\sqrt{t+1}}+t\) ,  (0<\(t\le\frac{1}{9}\)

Ta có Max \(f\left(t\right)=f\left(\frac{1}{9}\right)=\frac{6\sqrt{10}}{10}+\frac{1}{9}\)\(t\in\left(0;\frac{1}{9}\right)\)