K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

8 tháng 10 2019

P= a+b2019-ab+c(c2019-b-a) \(\le\) a + b2019 + 1.(12019 - b - a) =a + b2019 +1 - b - a = b(b2018 - 1) +1 \(\le\)1.(12018 - 1) +1 = 1

Vậy Max P=1

đạt được khi c=b=1; 0\(\le a\le1\) 

21 tháng 10 2019

(1-a)(1-b)(1-c)\(\ge\)0 <=> 1-a-b-c+ab+ac+dc-abc \(\ge\)0  <=> a+ b+ c- ab- ac- bc \(\le\)1-abc\(\le1\)(vì với a.b,c \(\ge0=>abc\ge0=>-abc\le0\))

\(b\le1=>b^{2019}\le b;c\le1=>c^{2020}\le c=>P\le a+b+c-ab-bc-ca\le1.\)

vậy GTLN của P là 1

đạt được khi (1-a)(1-b)(1-c)=0; abc=0; b=1; c=1 => a=0; b=c =1

28 tháng 11 2019

Xét 

\(\left(1-a\right)\left(1-b\right)\left(1-c\right)\ge0\)

\(\Leftrightarrow\left(1-b-a+ab\right)\left(1-c\right)\ge0\)

\(\Leftrightarrow1-\left(a+b+c\right)+ab+bc+ca-abc\ge0\)

\(\Leftrightarrow a+b+c-ab-bc-ca+abc\le1\)

\(\Leftrightarrow a+b+c-ab-bc-ca\le1\)

Dấu "=" xảy ra tại \(a=b=0;c=1\) và các hoán vị.

28 tháng 11 2019

o lờ mờ dấu "=" xảy ra khi a=b=0;c=1 và các hoán vị hoặc a=b=1;c=0 và các hoán vị 

\(A=a\left(1-b\right)+b\left(1-c\right)+c\left(1-a\right)\ge0\)

Dấu "=" xảy ra khi a=b=c=0 hoặc a=b=c=1 

AH
Akai Haruma
Giáo viên
29 tháng 11 2019

Nguyễn Anh Kim Hân: xin lỗi bạn vì bây giờ mình mới có thời gian đọc bài của bạn. Hơi muộn nhưng chúc bạn thi đạt kết quả tốt.

Lời giải:

Vì $0\leq a,b,c\leq 1\Rightarrow b^{2019}\leq b; c^{2020}\leq c$

$\Rightarrow P\leq a+b+c-(ab+bc+ac)(1)$

Theo đề bài: $a,b,c\leq 1$

$\Rightarrow (a-1)(b-1)(c-1)\leq 0$

$\Leftrightarrow a+b+c-(ab+bc+ac)\leq 1-abc$

Mà $abc\geq 0$ nên $a+b+c-(ab+bc+ac)\leq 1(2)$

Từ $(1);(2)\Rightarrow P\leq 1$

Vậy $P_{\max}=1$. Dấu "=" xảy ra khi $(a,b,c)=(0,1,1); (0,0,1)$ và các hoán vị.

AH
Akai Haruma
Giáo viên
30 tháng 9 2019

Lời giải:

Do $a,b,c\in [0;1]$ nên $b^{2019}\leq b; c^{2020}\leq c$

$\Rightarrow P\leq a+b+c-ab-bc-ac$

Mặt khác, cũng vì $a,b,c\in [0;1]$ nên:

$(a-1)(b-1)(c-1)\leq 0$

$\Leftrightarrow abc-(ab+bc+ac)+(a+b+c)-1\leq 0$

$\Leftrightarow a+b+c-ab-bc-ac\leq 1-abc$

Mà $1-abc\leq 1$ do $a,b,c\geq 0$

Do đó $P\leq a+b+c-ab-bc-ac\leq 1$

Vậy $P_{\max}=1$. Giá trị này đạt được tại $(a,b,c)=(0,0,1)$ hoặc $(0,1,1)$ và các hoán vị của chúng.

AH
Akai Haruma
Giáo viên
17 tháng 9 2019

Lời giải:

Do $a,b,c\in [0;1]$ nên $b^{2019}\leq b; c^{2020}\leq c$

$\Rightarrow P\leq a+b+c-ab-bc-ac$

Mặt khác, cũng vì $a,b,c\in [0;1]$ nên:

$(a-1)(b-1)(c-1)\leq 0$

$\Leftrightarrow abc-(ab+bc+ac)+(a+b+c)-1\leq 0$

$\Leftrightarow a+b+c-ab-bc-ac\leq 1-abc$

Mà $1-abc\leq 1$ do $a,b,c\geq 0$

Do đó $P\leq a+b+c-ab-bc-ac\leq 1$

Vậy $P_{\max}=1$. Giá trị này đạt được tại $(a,b,c)=(0,0,1)$ hoặc $(0,1,1)$ và các hoán vị của chúng.

19 tháng 11 2019

a)\(VT=\sum_{cyc}\frac{ab^3+ab^2c+a^2bc}{\left(a^2+bc+ca\right)\left(b^2+bc+ca\right)}\le\frac{\sum_{cyc}\left(ab^3+ab^2c+a^2bc\right)}{\left(ab+bc+ca\right)^2}\)

\(=\frac{ab^3+bc^3+ca^3+2a^2bc+2ab^2c+2abc^2}{\left(ab+bc+ca\right)^2}\)\(\le\frac{\sum_{cyc}ab\left(a^2+b^2\right)+abc\left(a+b+c\right)}{\left(ab+bc+ca\right)^2}\)

\(=\frac{\left(ab+bc+ca\right)\left(a^2+b^2+c^2\right)}{\left(ab+bc+ca\right)^2}=\frac{a^2+b^2+c^2}{ab+bc+ca}=VP\)

19 tháng 11 2019

b thiếu đề