K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

20 tháng 11 2014

Bài 1 :

Gọi số đó là a (a \(\in\) N)

Ta có :

a = 3k + 1\(\Rightarrow\)a + 2 = 3k + 3 chia hết cho 3

a = 5k + 3\(\Rightarrow\)a + 2 = 5k + 5 chia hết cho 5

a = 7k + 5\(\Rightarrow\)a + 2 = 7k + 7 chia hết cho 7 

\(\Rightarrow\)a + 2 chia hết cho 3 ; 5 ; 7 \(\Rightarrow\)a + 2 \(\in\) BC(3 ; 5 ; 7)

Mà a nhỏ nhất nên a + 2 nhỏ nhất 

\(\Rightarrow\)a + 2 = BCNN(3 ; 5 ; 7) = 3 . 5 . 7 = 105 (vì 3 ; 5 ; 7 là 3 số nguyên tố đôi một cùng nhau)

\(\Rightarrow\)a + 2 = 105 \(\Rightarrow\)a = 105 - 2 = 103

 

 

9 tháng 1 2017

Bài 1 :

Gọi số đó là a (a ∈ N)

Ta có :

a = 3k + 1⇒a + 2 = 3k + 3 chia hết cho 3

a = 5k + 3⇒a + 2 = 5k + 5 chia hết cho 5

a = 7k + 5⇒a + 2 = 7k + 7 chia hết cho 7 

⇒a + 2 chia hết cho 3 ; 5 ; 7 ⇒a + 2 ∈ BC(3 ; 5 ; 7)

Mà a nhỏ nhất nên a + 2 nhỏ nhất 

⇒a + 2 = BCNN(3 ; 5 ; 7) = 3 . 5 . 7 = 105 (vì 3 ; 5 ; 7 là 3 số nguyên tố đôi một cùng nhau)

⇒a + 2 = 105 

21 tháng 11 2014

3a)

1+2+3+4+5+...+n=231

=> (1+n).n:2=231

(1+n).n=231.2

(1+n).n=462

(1+n).n=2.3.7.11

(1+n).n=(2.11).(3.7)

(1+n).n=22.21

=>n=21

2 tháng 11 2016

gọi d là ước chung của n+3 và 2n+1 . Ta có (2n+6)chia hết cho d và 2n+5 chia hết cho d suy ra (2n+6)-(2n+5)chia hết cho d suy ra 1chia hết cho d vậy d=1   nhớ kết bạn với mình nhé

19 tháng 10 2015

dài quá mình ko làm hết.

AH
Akai Haruma
Giáo viên
9 tháng 12 2023

Bài 1:

Đặt $20x=25y=30z=t$ với $t$ là số tự nhiên khác 0.

$\Rightarrow x=\frac{t}{20}; y=\frac{t}{25}; z=\frac{t}{30}$

Để $x,y,z$ là stn thì $t\vdots 20,25,30$

$\Rightarrow t=BC(20,25,30)$

Để $x,y,z$ nhỏ nhất và khác 0 thì $t$ nhỏ nhất và khác 0

$\Rightarrow t=BCNN(20,25,30)$ sao cho $t\neq 0$

$\Rightarrow t=300$

$\Rightarrow x=\frac{t}{20}=\frac{300}{20}=15, y=\frac{t}{25}=\frac{300}{25}=12; z=\frac{300}{30}=10$

AH
Akai Haruma
Giáo viên
9 tháng 12 2023

Bài 2:

$2n+1\vdots n-1$

$\Rightarrow 2(n-1)+3\vdots n-1$

$\Rightarrow 3\vdots n-1$

$\Rightarrow n-1\in \left\{1; -1; 3;-3\right\}$

$\Rightarrow n\in \left\{3; 0; 4; -2\right\}$

11 tháng 12 2023

a:

\(1^2+2^2+3^2+...+n^2=\dfrac{n\left(n+1\right)\left(2n+1\right)}{6}\left(1\right)\)

Đặt \(S=1^2+2^2+...+n^2\)

Với n=1 thì \(S_1=1^2=1=\dfrac{1\left(1+1\right)\left(2\cdot1+1\right)}{6}\)

=>(1) đúng với n=1

Giả sử (1) đúng với n=k

=>\(S_k=1^2+2^2+3^2+...+k^2=\dfrac{k\left(k+1\right)\left(2k+1\right)}{6}\)

Ta sẽ cần chứng minh (1) đúng với n=k+1

Tức là \(S_{k+1}=\dfrac{\left(k+1+1\right)\cdot\left(k+1\right)\left(2\cdot\left(k+1\right)+1\right)}{6}\)

Khi n=k+1 thì \(S_{k+1}=1^2+2^2+...+k^2+\left(k+1\right)^2\)

\(=\dfrac{k\left(k+1\right)\left(2k+1\right)}{6}+\left(k+1\right)^2\)

\(=\left(k+1\right)\left(\dfrac{k\left(2k+1\right)}{6}+k+1\right)\)

\(=\left(k+1\right)\cdot\dfrac{2k^2+k+6k+6}{6}\)

\(=\left(k+1\right)\cdot\dfrac{2k^2+3k+4k+6}{6}\)

\(=\dfrac{\left(k+1\right)\cdot\left[k\left(2k+3\right)+2\left(2k+3\right)\right]}{6}\)

\(=\dfrac{\left(k+1\right)\left(k+2\right)\left(2k+3\right)}{6}\)

\(=\dfrac{\left(k+1\right)\left(k+1+1\right)\left[2\left(k+1\right)+1\right]}{6}\)

=>(1) đúng

=>ĐPCM
b: \(A=1\cdot5+2\cdot6+3\cdot7+...+2023\cdot2027\)

\(=1\left(1+4\right)+2\left(2+4\right)+3\left(3+4\right)+...+2023\left(2023+4\right)\)

\(=\left(1^2+2^2+3^2+...+2023^2\right)+4\left(1+2+2+...+2023\right)\)

\(=\dfrac{2023\cdot\left(2023+1\right)\left(2\cdot2023+1\right)}{6}+4\cdot\dfrac{2023\left(2023+1\right)}{2}\)

\(=\dfrac{2023\cdot2024\cdot4047}{6}+\dfrac{2023\cdot2024}{1}\)

\(=2023\left(\dfrac{2024\cdot4047}{6}+2024\right)⋮2023\)

\(A=\dfrac{2023\cdot2024\cdot4047}{6}+2023\cdot2024\)

\(=2024\left(2023\cdot\dfrac{4047}{6}+2023\right)\)

\(=23\cdot11\cdot8\cdot\left(2023\cdot\dfrac{4047}{6}+2023\right)\)

=>A chia hết cho 23 và 11