K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

5 tháng 11 2022

Giả sử số đó có n chữ số thì số đó có dạng\(\overline{a_1a_2...a_n}=10^{n-1}a_1+10^{n-2}a_2+...10a_{n-1}+a_n\) với \(a_n>a_1\)

và đảo ngược của nó là \(\overline{a_na_{n-1}...a_1}=10^{n-1}a_n+10^{n-2}a_{n-1}+...+10a_2+a_1\)

Như vậy ta có \(\overline{a_na_{n-1}...a_1}-\overline{a_1a_2...a_n}\) \(=\left(10^{n-1}-1\right)a_n+\left(10^{n-2}-10\right)a_{n-1}+...+\left(1-10^{n-1}\right)a_1\)

Ta nhận thấy các biểu thức dạng \(\pm10^k\mp10^l\left(l\le k\right)\) luôn chia hết cho 9 vì có tổng các chữ số chia hết cho 9

Ta rút ra kết luận: Một số gồm \(n\ge2\) chữ số mà có chữ số hàng đơn vị lớn hơn chữ số thứ \(n\) thì lấy số có nghịch đảo các chữ số của nó trừ đi chính nó sẽ được một số chia hết cho 9.

Như vậy theo đề bài, ta có \(\left\{{}\begin{matrix}B=3A\\B-A=9k\left(k\inℕ^∗\right)\end{matrix}\right.\)

Từ pt đầu tiên, ta có \(A=\dfrac{B}{3}\). Thay vào pt thứ 2, ta có \(B-\dfrac{B}{3}=9k\Leftrightarrow\dfrac{2B}{3}=9k\Leftrightarrow B=\dfrac{27}{2}k\) (*)

Đồng thời \(B=3A\) nên \(3A-A=9k\Leftrightarrow2A=9k\Leftrightarrow A=\dfrac{9k}{2}\), do A là số tự nhiên nên \(\dfrac{9k}{2}\) là số tự nhiên hay \(9k⋮2\) hay \(k⋮2\). Đặt \(k=2l\left(l\inℕ^∗\right)\), thay vào (*), ta có \(B=27l⋮27\) (đpcm)

14 tháng 8 2021

1. ta có abc + deg = 560

abc : deg = 3 dư 68 

(1 + 3) x deg = 560- 68 = 492

deg = 492 : 4 = 123

abc là : 123 x 3 + 68 = 437

2. ta có :

ab + ba = 99

ba - ab = 27

ba = ( 99 + 27) : 2 = 63

ab = 99 - 63 = 36

HT

14 tháng 8 2021

bạn tribinh lm kiểu j thế ?????

1 tháng 9 2018

p=a^2+b^2 (1)

p là số nguyên tố, p-5 chia hết 8 => p lẻ >=13  và a,b có 1 chẵn 1 lẻ

A=a.x^2-b.y^2 chia hết cho p, nên có thể viết  A = p(c.x^2 -d.y^2) với c,d phải nguyên

và c.p = a và d.p = b

thay (1) vào ta thấy c=a/(a^2+b^2) cần nguyên là vô lý vậy A muốn chia hết cho p <=> x và y cùng là bội số của p 

2 tháng 9 2018

Đặt \(p=8k+5\left(đk:K\in N\right)\)

Vì: \(\left(ax^2\right)^{4k+2}-\left(by^2\right)^{4k+2}⋮\left(ax^2-by^2\right)\)

\(\Rightarrow a^{4k+2}.x^{8k+4}-b^{4k+2}.y^{8k+4}⋮p\)

Mà \(a^{4k+2}.x^{8k+4}-b^{4k+2}.y^{8k+4}\)\(=\left(a^{4k+2}+b^{4k+2}\right).x^{8k+4}-b^{4k+2}\)\(\left(x^{8k+4}+y^{8k+4}\right)\)

Ta lại có: \(a^{4k+2}+b^{4k+2}=\left(a^2\right)^{2k+1}+\left(b^2\right)^{2k+1}⋮p\) ; p<d nên \(x^{8k+4}+y^{8k+4}⋮p\)

Làm tiếp đi 

9 tháng 9 2018

k mk đi 

ai k mk

mk k lại

thanks

6 tháng 1 2018

Ta có các số sau chữ số hàng chục gấp 3 lần chữ số hàng đơn vị :

31 ; 62 ; 93

Nếu ab = 31 thì ab - ba = 18 ( thỏa mãn )

Nếu ab = 62 thì ab - ba = 36 ( loại )

Nếu ab = 93 thì ab - ba = 54 ( loại )

Vậy số cần tìm là 31

6 tháng 1 2018

Ta có các số sau chữ số hàng chục gấp 3 lần chữ số hàng đơn vị : 

31 , 62 , 93 

Nếu ab = 31 thì ab - ba = 18 ( thỏa mãn )

Nếu ab = 62 thì ab - ba = 36 ( loại )

Nếu ab = 93 thì ab - ba = 54 ( loại )

Vậy số cần tìm là 31 

27 tháng 7 2017

a)Ta có:a.(a+1)chia hết cho 2

Giả sử a là một số chẵn

=>a+1 là một số lẻ

Vì a.(a+1)là một số chẵn =>Tích 2 số tự nhiên liên tiếp chia hết cho 2

b)tương tự

Gọi số tự nhiên cần tìm là ab(Điều kiện: \(\left\{{}\begin{matrix}a,b\in N\\0< a< 10\\0< b< 10\end{matrix}\right.\))

Vì số đó gấp 9 lần tổng các chữ số của nó nên ta có phương trình:

\(10a+b=9\left(a+b\right)\)

\(\Leftrightarrow10a+b=9a+9b\)

\(\Leftrightarrow10a+b-9a-9b=0\)

\(\Leftrightarrow a-8b=0\)(1)

Vì khi đổi chỗ hai chữ số thì ta được số mới kém số ban đầu 63 đơn vị nên ta có phương trình:

\(10b+a+63=10a+b\)

\(\Leftrightarrow10b+a+63-10a-b=0\)

\(\Leftrightarrow-9a+9b=-63\)

\(\Leftrightarrow-9\left(a-b\right)=-9\cdot7\)

\(\Leftrightarrow a-b=7\)(2)

Từ (1) và (2) ta lập được hệ phương trình:

\(\left\{{}\begin{matrix}a-8b=0\\a-b=7\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}-7b=-7\\a=7+b\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}b=1\\a=7+1=8\end{matrix}\right.\)

Vậy: Số ban đầu là 81

30 tháng 1 2021

Gọi số cần tìm là \(\overline{ab}\)

Theo bài ta có :

\(\overline{ab}=9\left(a+b\right)\)

\(\Leftrightarrow10a+b=9a+9b\)

\(\Leftrightarrow a=8b\)

\(\Leftrightarrow a-8b=0\) \(\left(1\right)\)

Lại có : Khi đổi chỗ 2 chữ số thì đc số mới kém số ban đầu 2 đơn vị 

\(\Leftrightarrow\overline{ab}-\overline{ba}=63\)

\(\Leftrightarrow10a+b-10b-a=63\)

\(\Leftrightarrow9a-9b=0\) \(\left(2\right)\)

Từ \(\left(1\right)+\left(2\right)\Leftrightarrow\left\{{}\begin{matrix}a=8\\b=1\end{matrix}\right.\)

Vậy.....

11 tháng 5 2022

BN THAM KHẢO:

undefined