Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bg
C1: Ta có: n chia hết cho 11 dư 4 (n \(\inℕ\))
=> n = 11k + 4 (với k \(\inℕ\))
=> n2 = (11k)2 + 88k + 42
=> n2 = (11k)2 + 88k + 16
Vì (11k)2 \(⋮\)11, 88k \(⋮\)11 và 16 chia 11 dư 5
=> n2 chia 11 dư 5
=> ĐPCM
C2: Ta có: n = 13x + 7 (với x \(\inℕ\))
=> n2 - 10 = (13x)2 + 14.13x + 72 - 10
=> n2 - 10 = (13x)2 + 14.13x + 39
Vì (13x)2 \(⋮\)13, 14.13x \(⋮\)13 và 39 chia 13 nên n2 - 10 = (13x)2 + 14.13x + 39 \(⋮\)13
=> n2 - 10 \(⋮\)13
=> ĐPCM
Ta có x chia 7 dư 6.Ta đặt x=7k+6
Khi đó,\(x^2=\left(7k+6\right)^2=49k^2+84k+36=7\left(7k^2+12k+5\right)+1\)
Vậy x2 chia 7 dư 6(đccm)
Ta có x chia 9 dư 5,ta đặt x=9k+5
Khi đó,\(x^2=\left(9k+5\right)^2=81k^2+90k+25=9\left(9k^2+10k+2\right)+7\)
Vậy x2 chia 9 dư 7(đccm)
a) Vì a chia 3 dư 1 nên a có dạng 3m+1 , vì b chia 3 dư 2 nên b có dạng 3n+2. \(\left(m,n\in N\right)\)
Ta có \(ab=\left(3m+1\right)\left(3n+2\right)=3mn+6m+3n+2\)
\(=3\left(mn+2m+n\right)+2\)
Vậy ab chia 3 dư 2 .
b) Vì a chia 5 dư 4 nên a có dạng 5k-1 \(\left(k\in N\right)\)
Ta có \(a^2=\left(5k-1\right)^2=25k^2-10k+1=5\left(5k^2-2k\right)+1\)
Vậy \(a^2\) chia 5 dư 1 .
Đặt thương của a chia 5 là x
=> Số a là: 5x + 4
=> \(a^2\)=\(\left(5x+4\right)^2\)=\(25x^2+40x+16\)
Vì \(25x^2\)chia hết cho 5 ( 25 chia hết cho 5 )
\(40x\)chia hết cho 5 ( 40 chia hết cho 5 ) => \(25x^2+40x\)chia hết cho 5
\(16\)chia 5 dư 1
=> \(25x^2+40x+16\)chia 5 dư 1
Vậy \(a^2\)chia 5 dư 1
a chia 5 dư 4 => a = 5k + 4 [k ∈ N]
=> a2 = [5k + 4]2 = 25k2 + 40k + 16 = 25k2 + 40k + 15 + 1 =- 5[5k2 + 8k + 3] + 1 chia 5 dư 1 => ĐPCM
Vì a chia cho 5 dư 4
\(\Rightarrow a=-1\left(mod5\right)\)
\(\Rightarrow a^2=1\left(mod5\right)\)
Vậy \(a^2\)chia cho 5 dư 1( đpcm)
câu 1 sai đề bạn ạ
câu 2: a đồng dư 4 mod 4. ta có a2 đồng dư 16 hay đồng dư 5 mod 11
1.Đề sai
2. Vì a chia 11 dư 4 nên a = 11k + 4 với k thuộc N
Ta có : \(a^2=\left(11k+4\right)^2=\left(11k\right)^2+2.11k.4+11+5=11\left(11k^2+8k+1\right)+5=11Q+5\)
Do đó \(a^2\) chia 11 dư 5
a : 7 dư 3 cm a2 : 7 dư 2
Ta có: a = 7k + 3
⇔ a2 = (7k + 3)2
⇔ a2 = 49k2 + 42k + 9
⇔ a2 = 7.(7k2 + 6k + 1) + 2
7 ⋮ 7 ⇔ 7.(7k2 + 6k + 1) ⋮ 7
⇔ a2 = 7.(7k2 + 6k + 1) + 2 : 7 dư 2 (đpcm)
Cách 2 sử dụng đồng dư thức:
a \(\equiv\) 3 (mod 7) ⇔ a2 \(\equiv\) 32 (mod 7) 32 : 7 dư 2 ⇔ a2 : 7 dư 2 (đpcm)