Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Câu a là: Chia cho 3, số dư có thể là 0;1;2. Chia cho 4, số dư có thể là 0;1;2;3. Chia cho 5, số dư có thể là 0;1;2;3;4
gọi a=3p+r
b=3q+r
xét a-b= (3p+r)-(3q+r)
=3p + r - 3q - r
=3p+3q =3.(p+q) chia hết cho 3
các câu sau làm tương tự
<=>a chia hết 12 và 14
VD:a=84
84 chia cho 36 dư 12
Vì là ví dụ chung nên tất cả các số a chia cho 36 đều dư 12
Số tự nhiên a chia cho 3 dư 1, chia cho 4 dư 2, chia cho 5 dư 3, chia cho 6 dư 4 => a + 2 chia hết cho 3, 4, 5, 6
=> a + 2 là BC(3;4;5;6)
Ta có BCNN(3;4;5;6) = 60
=> a + 2 chia hết cho 60
=> \(a+2\in\left\{0;60;120;180;240;300;360;420;480;540;...\right\}\)
=> \(a\in\left\{58;118;178;238;298;358;418;538;...\right\}\)
Trong các số trên thì số bé nhất chia hết cho 11 là 418.
Vậy số cần tìm là 418
bn viết ra gọn hơn đc k