K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

31 tháng 8 2018

Bài 3: \(A=\frac{\left(2a+b+c\right)\left(a+2b+c\right)\left(a+b+2c\right)}{\left(a+b\right)\left(b+c\right)\left(c+a\right)}\)

Đặt a+b=x;b+c=y;c+a=z

\(A=\frac{\left(x+y\right)\left(y+z\right)\left(z+x\right)}{xyz}\ge\frac{2\sqrt{xy}.2\sqrt{yz}.2\sqrt{zx}}{xyz}=\frac{8xyz}{xyz}=8\)

Dấu = xảy ra khi \(a=b=c=\frac{1}{3}\)

31 tháng 8 2018

Bài 4: \(A=\frac{9x}{2-x}+\frac{2}{x}=\frac{9x-18}{2-x}+\frac{18}{2-x}+\frac{2}{x}\ge-9+\frac{\left(\sqrt{18}+\sqrt{2}\right)^2}{2-x+x}=-9+\frac{32}{2}=7\)

Dấu = xảy ra khi\(\frac{\sqrt{18}}{2-x}=\frac{\sqrt{2}}{x}\Rightarrow x=\frac{1}{2}\)

26 tháng 9 2017

Tuấn you xem thế này có đúng ko?

Bài 1:

Xét hiệu a^2+b^2+c^2-ab-ac-bc=1/2.2(a^2+b^2+c^2-ab-ac-bc)
=1/2(2a^2+2b^2+2c^2-2ab-2ac-2bc)
=1/2[(a^2-2ab+b^2)+(a^2-2ac+c^2)+(b^2-2bc+c^2)]
=1/2.[(a-b)^2+(a-c)^2+(b-c)^2]
vì (a-b)^2+(a-c)^2+(b-c)^2>=0
nên 1/2.[(a-b)^2+(a-c)^2+(b-c)^2]>=0
hay a^2+b^2+c^2-ab-ac-bc >=0<=> a^2+b^2+c^2>=ab+ac+bc

26 tháng 9 2017

bạn xem lại đề bài nhé

nó cần c/m

\(\frac{a^2}{4}+b^2+c^2\ge ab-ac+2bc\)

chứ không phải

\(a^2+b^2+c^2\ge ab+ac+bc\)

bạn hãy thử lại sau nhé

22 tháng 8 2018

\(\left(\frac{a+b}{2-a-b}\right)^2\ge\frac{ab}{\left(1-a\right)\left(1-b\right)}\)

\(\Leftrightarrow\left(\frac{a+b}{2-a-b}\right)^2-\frac{ab}{\left(1-a\right)\left(1-b\right)}\ge0\)

\(\Leftrightarrow\frac{\left(a^2+2ab+b^2\right)\left(a-1\right)\left(b-1\right)-ab\left(a+b-2\right)^2}{\left(a+b-2\right)^2\left(a-1\right)\left(b-1\right)}\ge0\)

\(\Leftrightarrow\frac{-a^3-b^3+a^2+b^2+a^2b+ab^2-2ab}{\left(a+b-2\right)^2\left(a-1\right)\left(b-1\right)}\ge0\)

\(\Leftrightarrow\frac{-\left(a-b\right)^2\left(a+b-1\right)}{\left(a+b-2\right)^2\left(a-1\right)\left(b-1\right)}\ge0\)

BĐT cuối luôn đúng vì \(a;b\in\)\((0;\frac{1}{2}]\)

11 tháng 6 2019

A= \(\frac{1}{ab}\). \(\frac{|ab^2|}{4}\)

Vì a<0 nên \(\left|ab^2\right|\)= -a\(b^2\) => A= -b/4

11 tháng 6 2019

\(A=\frac{1}{ab}.\frac{\left|a\right|b^2}{4}=\frac{1}{a}.\frac{-ab}{4}=\frac{-b}{4}\)

\(B=\frac{\left(a-3\right)^2}{2}.\frac{5}{\left|3-a\right|}=\frac{\left(a-3\right)^2}{2}.\frac{-5}{a-3}=\frac{-5\left(a-3\right)}{2}\)