Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(A=\frac{a}{2-a}+\frac{1-a}{1+a}=\frac{2a^2-2a+2}{\left(1+a\right)\left(2-a\right)}\)
\(=1-\frac{3a\left(1-a\right)}{\left(1+a\right)\left(2-a\right)}\le1\)
Min tìm tương tự
ĐK: x khác 0
Từ\(2x^2+\frac{y^2}{4}+\frac{1}{x^2}=4\)
\(\Rightarrow x^2+2+\frac{1}{x^2}+x^2+xy+\frac{y^2}{4}=6+xy\)
\(\Leftrightarrow\left(x+\frac{1}{x}\right)^2+\left(x+\frac{y}{2}\right)^2=6+xy\)
Do VT > 0\(\Rightarrow6+xy\ge0\Rightarrow xy\ge6\)
Có A = 2016 + xy > 2016 + 6 = 2022
tth : Viết nhầm :V
Đoạn cuối \(6+xy\ge0\Rightarrow xy\ge-6\)
Có A = 2016 + xy > 2016 - 6 = 2010 !!!
Được rồi chứ gì -.-
Ta có: \(a+b+c=1\Leftrightarrow a^2+ab+ca=a\)
Thay vào ta có: \(\sqrt{\frac{bc}{a+bc}}=\sqrt{\frac{bc}{a^2+ab+ca+bc}}=\sqrt{\frac{bc}{\left(a+b\right)\left(a+c\right)}}\)
Áp dụng Cauchy ngược: \(\sqrt{\frac{bc}{a+bc}}=\sqrt{\frac{bc}{a^2+ab+ca+bc}}\le\frac{\frac{b}{a+b}+\frac{c}{a+c}}{2}\)
Tương tự ta CM được: \(\sqrt{\frac{ab}{c+ab}}\le\frac{\frac{a}{c+a}+\frac{b}{c+b}}{2}\)
\(\sqrt{\frac{ca}{b+ca}}\le\frac{\frac{c}{b+c}+\frac{a}{b+a}}{2}\)
Cộng vế 3 BĐT trên ta được:
\(P\le\frac{\frac{a}{c+a}+\frac{b}{c+b}+\frac{b}{a+b}+\frac{c}{a+c}+\frac{c}{b+c}+\frac{a}{b+a}}{2}\)
\(=\frac{\left(\frac{a}{c+a}+\frac{c}{a+c}\right)+\left(\frac{b}{c+b}+\frac{c}{b+c}\right)+\left(\frac{a}{b+a}+\frac{b}{a+b}\right)}{2}\)
\(=\frac{1+1+1}{2}=\frac{3}{2}\)
Dấu "=" xảy ra khi: \(a=b=c=\frac{1}{3}\)
Vậy \(Max_P=\frac{3}{2}\Leftrightarrow a=b=c=\frac{1}{3}\)
Ta có :
\(c+ab=\left(a+b+c\right)c+ab=ac+ac+c^2+ab=\left(a+c\right)\left(b+c\right)\)
Tương tự : \(a+bc=\left(a+b\right)\left(a+c\right);c+ab=\left(c+b\right)\left(c+a\right)\)
\(\Rightarrow P=\sqrt{\frac{ab}{\left(a+c\right)\left(b+c\right)}}+\sqrt{\frac{bc}{\left(a+b\right)\left(a+c\right)}}+\sqrt{\frac{ca}{\left(c+a\right)\left(c+b\right)}}\)
Áp dụng BĐT cauchy :
\(\sqrt{\frac{ab}{\left(a+c\right)\left(b+c\right)}}\le\frac{1}{2}\left(\frac{a}{a+c}+\frac{b}{b+c}\right)\)
\(\sqrt{\frac{bc}{\left(a+b\right)\left(a+c\right)}}\le\frac{1}{2}\left(\frac{b}{a+b}+\frac{c}{a+c}\right)\)
\(\sqrt{\frac{ca}{\left(c+b\right)\left(c+a\right)}}\le\frac{1}{2}\left(\frac{c}{c+b}+\frac{a}{c+a}\right)\)
Cộng vế với vế :
\(\Rightarrow P\le\frac{1}{2}\left(\frac{a}{a+c}+\frac{b}{b+c}+\frac{b}{a+b}+\frac{c}{a+c}+\frac{c}{c+b}+\frac{a}{c+a}\right)\)
\(\Leftrightarrow P\le\frac{1}{2}\left(\frac{a+c}{a+b}+\frac{b+c}{b+c}+\frac{a+b}{a+b}\right)=\frac{1}{2}.3=\frac{3}{2}\)
Dấu "=" xảy ra \(\Leftrightarrow a=b=c=\frac{1}{3}\)
\(A=\frac{a\left(1+a\right)+\left(2-a\right)\left(1-a\right)}{\left(2-a\right)\left(1+a\right)}=\frac{2a^2-2a+2}{-a^2+a+2}\)
Ta có: \(A=\frac{2\left(a^2-a+1\right)}{-a^2+a+2}=\frac{2\left[\left(a-\frac{1}{2}\right)^2+\frac{3}{4}\right]}{-a^2+a+2}\ge\frac{3}{-2\left(a^2-a-2\right)}\)(làm tắt tí)
\(=\frac{3}{-2\left[\left(a-\frac{1}{2}\right)^2-\frac{9}{4}\right]}=\frac{3}{-2\left(a-\frac{1}{2}\right)^2+\frac{9}{2}}\ge\frac{3}{\frac{9}{2}}=\frac{2}{3}\)
Max tương tự.
Max có thể làm theo cách này cx ok nè:Câu hỏi của Huyền Bùi - Toán lớp 8 - Học toán với OnlineMath