Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Dạng này nhìn mệt vãi:(
Do b > 0 nên chia hai vế của giả thiết cho b, ta được: \(a+\frac{2}{b}\le1\)
Bây giờ đặt \(a=x;\frac{2}{b}=y\). Bài toán trở thành:
Cho x, y là các số dương thỏa mãn \(x+y\le1\). Tìm Min:
\(P=x+y+\frac{1}{x^2}+\frac{8}{y^2}\). Quen thuộc chưa:v
Ko biết có tính sai chỗ nào không, nhưng hướng làm là vậy đó!
a)
\(x^3+y^3+3\left(x^2+y^2\right)+4\left(x+y\right)+4=0\)
\(\Leftrightarrow\left(x^3+3x^2+3x+1\right)+\left(y^3+3y^2+3y+1\right)+\left(x+y+2\right)=0\)
\(\Leftrightarrow\left(x+1\right)^3+\left(y+1\right)^3+\left(x+y+2\right)=0\)
\(\Leftrightarrow\left(x+y+2\right)\left[\left(x+1\right)^2-\left(x+1\right)\left(y+1\right)+\left(y+1\right)^2\right]+\left(x+y+2\right)=0\)
\(\Leftrightarrow\left(x+y+2\right)\left[\left(x+1\right)^2-\left(x+1\right)\left(y+1\right)+\left(y+1\right)^2+1\right]=0\)
Lại có :\(\left(x+1\right)^2-\left(x+1\right)\left(y+1\right)+\left(y+1\right)^2+1=\left[\left(x+1\right)-\frac{1}{2}\left(y+1\right)\right]^2+\frac{3}{4}\left(y+1\right)^2+1>0\)
Nên \(x+y+2=0\Rightarrow x+y=-2\)
Ta có :
\(M=\frac{1}{x}+\frac{1}{y}=\frac{x+y}{xy}=\frac{-2}{xy}\)
Vì \(4xy\le\left(x+y\right)^2\Rightarrow4xy\le\left(-2\right)^2\Rightarrow4xy\le4\Rightarrow xy\le1\)
\(\Rightarrow\frac{1}{xy}\ge\frac{1}{1}\Rightarrow\frac{-2}{xy}\le-2\)
hay \(M\le-2\)
Dấu "=" xảy ra khi \(x=y=-1\)
Vậy \(Max_M=-2\)khi \(x=y=-1\)
c) ( Mình nghĩ bài này cho x, y, z ko âm thì mới xảy ra dấu "=" để tìm Min chứ cho x ,y ,z dương thì ko biết nữa ^_^ , mình làm bài này với điều kiện x ,y ,z ko âm nhé )
Ta có :
\(\hept{\begin{cases}2x+y+3z=6\\3x+4y-3z=4\end{cases}\Rightarrow2x+y+3z+3x+4y-3z=6+4}\)
\(\Rightarrow5x+5y=10\Rightarrow x+y=2\)
\(\Rightarrow y=2-x\)
Vì \(y=2-x\)nên \(2x+y+3z=6\Leftrightarrow2x+2-x+3z=6\)
\(\Leftrightarrow x+3z=4\Leftrightarrow3z=4-x\)
\(\Leftrightarrow z=\frac{4-x}{3}\)
Thay \(y=2-x\)và \(z=\frac{4-x}{3}\)vào \(P\)ta có :
\(P=2x+3y-4z=2x+3\left(2-x\right)-4.\frac{4-x}{3}\)
\(\Rightarrow P=2x+6-3x-\frac{16}{3}+\frac{4x}{3}\)
\(\Rightarrow P=\frac{x}{3}+\frac{2}{3}\ge\frac{2}{3}\)( Vì \(x\ge0\))
Dấu "=" xảy ra khi \(x=0\Rightarrow\hept{\begin{cases}y=2\\z=\frac{4}{3}\end{cases}}\)( Thỏa mãn điều kiện y , z ko âm )
Vậy \(Min_P=\frac{2}{3}\)khi \(\hept{\begin{cases}x=0\\y=2\\z=\frac{4}{3}\end{cases}}\)
Từ giả thiết ta có: \(\left(x-1\right)\left(x-2\right)\le0\Rightarrow x^2\le3x-2\). Tương tự \(y^2\le3y-2\)
Từ đây ta có: \(A\ge\frac{x+2y}{3\left(x+y+1\right)}+\frac{y+2x}{3\left(x+y+1\right)}+\frac{1}{4\left(x+y-1\right)}\)
\(=\frac{x+y}{x+y+1}+\frac{1}{4\left(x+y-1\right)}\). Đặt \(t=x+y\Rightarrow2\le t\le4\)
Ta sẽ tìm min của \(A=\frac{t}{t+1}+\frac{1}{4\left(t-1\right)}\) với \(2\le t\le4\). Đến đây vẫn chưa mừng được vì ko thể dùng miền giá trị!Ta sẽ chứng minh A \(\le\frac{7}{8}\). Thật vậy: \(A-\frac{7}{8}=\frac{t}{t+1}-\frac{3}{4}+\frac{1}{4\left(t-1\right)}-\frac{1}{8}\)
\(=\frac{t-3}{4\left(t+1\right)}-\frac{t-3}{8\left(t-1\right)}=\frac{4\left(t-3\right)^2}{32\left(t+1\right)\left(t-1\right)}\ge0\). Do đó...
Đẳng thức xảy ra khi (x;y) = (2;1) và các hoán vị của nó!
P/s: Nhớ check xem em có quy đồng sai chỗ nào không:v
Ta có: \(a+b+c=1\Leftrightarrow a^2+ab+ca=a\)
Thay vào ta có: \(\sqrt{\frac{bc}{a+bc}}=\sqrt{\frac{bc}{a^2+ab+ca+bc}}=\sqrt{\frac{bc}{\left(a+b\right)\left(a+c\right)}}\)
Áp dụng Cauchy ngược: \(\sqrt{\frac{bc}{a+bc}}=\sqrt{\frac{bc}{a^2+ab+ca+bc}}\le\frac{\frac{b}{a+b}+\frac{c}{a+c}}{2}\)
Tương tự ta CM được: \(\sqrt{\frac{ab}{c+ab}}\le\frac{\frac{a}{c+a}+\frac{b}{c+b}}{2}\)
\(\sqrt{\frac{ca}{b+ca}}\le\frac{\frac{c}{b+c}+\frac{a}{b+a}}{2}\)
Cộng vế 3 BĐT trên ta được:
\(P\le\frac{\frac{a}{c+a}+\frac{b}{c+b}+\frac{b}{a+b}+\frac{c}{a+c}+\frac{c}{b+c}+\frac{a}{b+a}}{2}\)
\(=\frac{\left(\frac{a}{c+a}+\frac{c}{a+c}\right)+\left(\frac{b}{c+b}+\frac{c}{b+c}\right)+\left(\frac{a}{b+a}+\frac{b}{a+b}\right)}{2}\)
\(=\frac{1+1+1}{2}=\frac{3}{2}\)
Dấu "=" xảy ra khi: \(a=b=c=\frac{1}{3}\)
Vậy \(Max_P=\frac{3}{2}\Leftrightarrow a=b=c=\frac{1}{3}\)
Ta có :
\(c+ab=\left(a+b+c\right)c+ab=ac+ac+c^2+ab=\left(a+c\right)\left(b+c\right)\)
Tương tự : \(a+bc=\left(a+b\right)\left(a+c\right);c+ab=\left(c+b\right)\left(c+a\right)\)
\(\Rightarrow P=\sqrt{\frac{ab}{\left(a+c\right)\left(b+c\right)}}+\sqrt{\frac{bc}{\left(a+b\right)\left(a+c\right)}}+\sqrt{\frac{ca}{\left(c+a\right)\left(c+b\right)}}\)
Áp dụng BĐT cauchy :
\(\sqrt{\frac{ab}{\left(a+c\right)\left(b+c\right)}}\le\frac{1}{2}\left(\frac{a}{a+c}+\frac{b}{b+c}\right)\)
\(\sqrt{\frac{bc}{\left(a+b\right)\left(a+c\right)}}\le\frac{1}{2}\left(\frac{b}{a+b}+\frac{c}{a+c}\right)\)
\(\sqrt{\frac{ca}{\left(c+b\right)\left(c+a\right)}}\le\frac{1}{2}\left(\frac{c}{c+b}+\frac{a}{c+a}\right)\)
Cộng vế với vế :
\(\Rightarrow P\le\frac{1}{2}\left(\frac{a}{a+c}+\frac{b}{b+c}+\frac{b}{a+b}+\frac{c}{a+c}+\frac{c}{c+b}+\frac{a}{c+a}\right)\)
\(\Leftrightarrow P\le\frac{1}{2}\left(\frac{a+c}{a+b}+\frac{b+c}{b+c}+\frac{a+b}{a+b}\right)=\frac{1}{2}.3=\frac{3}{2}\)
Dấu "=" xảy ra \(\Leftrightarrow a=b=c=\frac{1}{3}\)
\(Q=\frac{1}{a^2+b^2}+2012+\frac{1}{ab}+4ab.\)
Ta có \(M=\frac{1}{a^2+b^2}+\frac{1}{ab}+4ab=\frac{1}{a^2+b^2}+\frac{1}{2ab}+\frac{1}{2ab}+8ab-4ab\)
Áp dụng bđt Cauchy ta có
\(M\ge\frac{4}{\left(a+b\right)^2}+2\sqrt{\frac{1}{2ab}.8ab}-\left(a+b\right)^2=7\)
=> \(Q\ge2012+7=2019\)
Dấu "=" xảy ra khi a=b=\(\frac{1}{2}\)
Vậy......
\(Q=\frac{1}{a^2+b^2}+\frac{2012ab+1}{ab}+4ab=\left(\frac{1}{a^2+b^2}+\frac{1}{2ab}\right)+\left(4ab+\frac{1}{4ab}\right)+\frac{1}{4ab}+2012\)
Áp dụng bđt \(\frac{1}{x}+\frac{1}{y}\ge\frac{4}{x+y};\left(x+y\right)^2\ge4xy\),ta có:
\(\frac{1}{a^2+b^2}+\frac{1}{2ab}\ge\frac{4}{a^2+b^2+2ab}=\frac{4}{\left(a+b\right)^2}\ge\frac{4}{1}=4\)
\(\left(4ab+\frac{1}{4ab}\right)^2\ge4.4ab\cdot\frac{1}{4ab}=4\Rightarrow4ab+\frac{1}{4ab}\ge2\)
\(\left(a+b\right)^2\ge4ab\Rightarrow\frac{1}{ab}\ge\frac{4}{\left(a+b\right)^2}\ge\frac{4}{1}=4\Rightarrow\frac{1}{4ab}\ge1\)
\(\Rightarrow Q\ge4+2+1+2012=2019\)
Dấu "=" xảy ra khi a=b=1/2
\(A=\frac{a\left(1+a\right)+\left(2-a\right)\left(1-a\right)}{\left(2-a\right)\left(1+a\right)}=\frac{2a^2-2a+2}{-a^2+a+2}\)
Ta có: \(A=\frac{2\left(a^2-a+1\right)}{-a^2+a+2}=\frac{2\left[\left(a-\frac{1}{2}\right)^2+\frac{3}{4}\right]}{-a^2+a+2}\ge\frac{3}{-2\left(a^2-a-2\right)}\)(làm tắt tí)
\(=\frac{3}{-2\left[\left(a-\frac{1}{2}\right)^2-\frac{9}{4}\right]}=\frac{3}{-2\left(a-\frac{1}{2}\right)^2+\frac{9}{2}}\ge\frac{3}{\frac{9}{2}}=\frac{2}{3}\)
Max tương tự.
1) Áp dụng bất đẳng thức AM-GM :
\(P=\frac{a^2+b^2}{ab}+\frac{ab}{a^2+b^2}\ge2\sqrt{\frac{a^2+b^2}{ab}\cdot\frac{ab}{a^2+b^2}}=2\sqrt{1}=2\)
Dấu "=" xảy ra \(\Leftrightarrow a^2+b^2-ab=0\)
1) Anh phương làm lạ zậy?
Đặt \(x=\frac{a^2+b^2}{ab}\ge\frac{2ab}{ab}=2\) (do a.b > 0 nên ta không cần viết 2|ab| thay cho 2ab)
Khi đó bài toán trở thành: Tìm giá trị nhỏ nhất của biểu thức \(P=x+\frac{1}{x}\) (với \(x\ge2\))
Ta có: \(P=\left(\frac{1}{x}+\frac{x}{4}\right)+\frac{3x}{4}\ge2\sqrt{\frac{1}{x}.\frac{x}{4}}+\frac{3x}{4}\ge1+\frac{3.2}{4}=\frac{5}{2}\)
Vậy P min là 5/2 khi x = 2
\(A=\frac{a}{2-a}+\frac{1-a}{1+a}=\frac{2a^2-2a+2}{\left(1+a\right)\left(2-a\right)}\)
\(=1-\frac{3a\left(1-a\right)}{\left(1+a\right)\left(2-a\right)}\le1\)
Min tìm tương tự