Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1/ \(\left(x-y\right)^2+\left(x+y\right)^2-2\left(x^2-y^2\right)-4y^2+10\)
\(=x^2-2xy+y^2+x^2+2xy+y^2-2x^2+2y^2-4y^2+10\)
\(=10\)
2/ \(5a^2+b^2=6ab\Leftrightarrow\left(5a^2-5ab\right)+\left(b^2-ab\right)=0\)
\(\Leftrightarrow\left(a-b\right)\left(5a-b\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}a=b\\5a=b\end{cases}}\)
Với a = b thì
\(M=\frac{a-b}{a+b}=\frac{a-a}{a+a}=0\)
Với 5a = b thì
\(M=\frac{a-b}{a+b}=\frac{a-5a}{a+5a}=\frac{-4}{6}=\frac{-2}{3}\)
1.(x-y)2+(x+y)2-2(x2-y2)-4y2+10
=x2-2xy+y2+x2+2xy+y2-2x2+2y2-4y2+10
=x2+x-2x2-2xy+2xy+y2+y2+2y2-4y2+10
=10
=>dpcm
2.Ta co : 5a2+b2=6ab
5a2+b2-6ab=0
5a2+b2-5ab-ab=0
5a2-5ab+b2-ab=0
5a(a-b)+b(b-a)=0
5a(a-b)-b(a-b)=0
(a-b)(5a-b)=0
Ta lai co : a-b=0 \(\Rightarrow\)a=b
Va : 5a-b=0 \(\Rightarrow\)5a=b
Thay : a=b vao M
\(\Rightarrow M=\frac{a-b}{a+b}=\frac{b-b}{b+b}=\frac{0}{2b}=0\)
Thay : 5a=b vao M
\(\Rightarrow M=\frac{a-b}{a+b}=\frac{a-5a}{a+5a}=-\frac{4a}{6a}=-\frac{4}{6}=-\frac{2}{3}\)
\(a^2-4ab+5b^2+2b+1=0\)
\(\Leftrightarrow a^2-4ab+4b^2+b^2+2b+1=0\)
\(\Leftrightarrow\left(a-2b\right)^2+\left(b+1\right)^2=0\)
\(\Leftrightarrow\left\{{}\begin{matrix}a-2b=0\\b+1=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}a=-2\\b=-1\end{matrix}\right.\)
\(C=5a^3-b^{2019}=5\left(-2\right)^3-\left(-1\right)^{2019}=-40+1=-39\)