Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có abc chia hết cho 27
=> 10(100a + 10b + c) chia hết cho 27
=> 1000a + 100b + 10c chia hết cho 27
=> 999a + (100b + 10c + a) chia hết cho 27
Mà 999a chia hết cho 27
Vậy 100b + 10c + a = bca chia hết cho 27
Giả sử abc chia hết cho 27 thì trước hết abc phải chia hết cho 9 => a+b+c chia hết cho 9
=> bca cũng chia hết cho 9 => bca = 9m (m € N)
ta có: abc = 27k với (k € N)
abc - bca = 27k - 9m
<=> (100a + 10b + c) - (100b + 10c + a) = 9(3k-m)
<=> 99a - 90b - 9c = 9(3k - m)
<=> 11a - 10b - c + m = 3k
<=> 21a - 10(a+b+c) + 9c + m = 3k
Vế phải chia hết cho 3 mà các số: 21a ; 10(a+b+c) và 9c đều chia hết cho 3
=> m cũng chia hết cho 3
=> m = 3n (n € N)
=> bca = 9m = 27n => bca chia hết cho 27 (đpcm)
abc \(⋮\)27
\(\Rightarrow\)abc0 \(⋮\)27
\(\Rightarrow\)1000a + bc0 \(⋮\)27
\(\Rightarrow\)27 . 37a + bca \(⋮\)27
Do 27 . 37a \(⋮\)27 nên bca \(⋮\)27
abc : 27 tức là chia hết cho 3 va 9
vì số nào có tổng chia hết cho 3 và 9 thì chia hết cho 3 và 9 mà bca là đạo ngược các chữ số của abc nên tổng các cs của bca ko thay đổi.
=> bca chia hết cho 27
mk làm linh tinh thôi chứ ko chắc đâu
abc : 27 tức là chia hết cho 3 va 9
vì số nào có tổng chia hết cho 3 và 9 thì chia hết cho 3 và 9 mà bca là đạo ngược các chữ số của abc nên tổng các cs của bca ko thay đổi.
=> bca chia hết cho 27
mk làm linh tinh thôi chứ ko chắc đâu
Ta có bca = 100b + 10c + a (1)
abc chia hết 27 <=> 100a + 10b + c chia hết 27 <=> 19a + 10b + c chia hết 27
=> c = 27k - 19a - 10b
Thay vào (1) => bca = 100b + 10(27k - 19a - 10b) + a = 270k - 189a = 27(10k - 7a) chia hết 27
=> bca chia hết cho 27
Vậy khi abc chia hết cho 27 thì bca cũng chia hết cho 27.
1) abc chia hết cho 27
chứng tỏ:a+b+c chia hết cho 27
Nên bca cũng chia hết cho 27
2) 1 số tạo bới 27 chữ số 1 là: 11111..11( 27 chữ số 1) thì sẽ có tổng:
1+1+1+1+..+1+1 ( 27 số hạng)=27
-=> số tạo bỏi 27 chữ số 1 chia hết cho 27
abc chia hết cho 27
⇒100a + 10b + c chia hết cho 27
⇒10﴾100a + 10b + c﴿ chia hết cho 27
⇒1000a + 100b + 10c chia hết cho 27
⇒999a + ﴾100b + 10c + a﴿ chia hết cho 27
Mà 999a chia hết cho 27
Vậy 100b + 10c + a = bca chia hết cho 27
abc chia hết cho 27
=> abc0 chia hết cho 27
=> 1000a + bc0 chia hết cho 27
=> 999a + a + bc0 chia hết cho 27
=> 27.37a + bca chia hết cho 27
Do 27.37a chia hết cho 27 nên bca chia hết cho 27
abc chia hết cho 27
=> abc0 chia hết cho 27
=> 1000a + bc0 chia hết cho 27
=> 999a + a + bc0 chia hết cho 27
=> 27.37a + bca chia hết cho 27
Do 27.37a chia hết cho 27 nên bca chia hết cho 27
Bạn vào tìm kiếm có câu hỏi tương tự nhé!
vãi thật luôn