K
Khách
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Các câu hỏi dưới đây có thể giống với câu hỏi trên
2 tháng 11 2016
Đề bài sai ngay từ giả thiết x,y,z nguyên dương.
Rõ ràng khi đó x,y,z > 0 => \(xy+yz+zx>0\)(đẳng thức không xảy ra)
Vậy đề đúng phải là x,y,z nguyên dương thỏa mãn \(xy+yz+zx=1\)
Khi đó ta giải như sau :
\(x^2+1=x^2+xy+yz+zx=\left(x+y\right)\left(x+z\right)\)
\(y^2+1=y^2+xy+yz+zx=\left(y+x\right)\left(y+z\right)\)
\(z^2+1=z^2+xy+yz+zx=\left(z+x\right)\left(z+y\right)\)
\(\Rightarrow A=\left[\left(x+y\right)\left(y+z\right)\left(z+x\right)\right]^2\) là bình phương của một số nguyên.
20 tháng 12 2016
Một bài "troll" người ta.
\(x^2+1=x^2+xy+yz+zx=\left(x+y\right)\left(x+z\right)\).
Em làm tương tự rồi nhân nhau là xong đó.