K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

1 tháng 3 2024

 

Đặt x=y=k

x^2+py^2/xy=k^2+py^2/k^2=k^2(p+1)/k^2=p+1

 

15 tháng 12 2017

Câu hỏi của Hoàng Anh Trần - Toán lớp 9 - Học toán với OnlineMath

Em có thể tham khảo tại đây nhé. Chỉ cần thêm kết luận \(\sqrt{1-xy}\in Q\) nên 1 - xy là bình phương của số hữu tỉ.

4 tháng 10 2020

* Xét y = 0 thì x = 0 => 1 - xy = 1 (là bình phương của một số hữu tỉ)

* Xét y \(\ne\)0 thì chia hai vế của giả thiết cho y4, ta được: \(\frac{x^5}{y^4}+y=\frac{2x^2}{y^2}\Rightarrow\frac{x^6}{y^4}+xy=\frac{2x^3}{y^2}\Rightarrow1-xy=\frac{x^6}{y^4}-\frac{2x^3}{y^2}+1=\left(\frac{x^3}{y^2}-1\right)^2\)(là bình phương của một số hữu tỉ)

Vậy 1 - xy là bình phương của một số hữu tỉ (đpcm)

2 tháng 11 2016

Đề bài sai ngay từ giả thiết x,y,z nguyên dương.

Rõ ràng khi đó x,y,z > 0 => \(xy+yz+zx>0\)(đẳng thức không xảy ra)

Vậy đề đúng phải là x,y,z nguyên dương thỏa mãn \(xy+yz+zx=1\)

Khi đó ta giải như sau : 

\(x^2+1=x^2+xy+yz+zx=\left(x+y\right)\left(x+z\right)\)

\(y^2+1=y^2+xy+yz+zx=\left(y+x\right)\left(y+z\right)\)

\(z^2+1=z^2+xy+yz+zx=\left(z+x\right)\left(z+y\right)\)

\(\Rightarrow A=\left[\left(x+y\right)\left(y+z\right)\left(z+x\right)\right]^2\) là bình phương của một số nguyên.

20 tháng 12 2016

Một bài "troll" người ta.

\(x^2+1=x^2+xy+yz+zx=\left(x+y\right)\left(x+z\right)\).

Em làm tương tự rồi nhân nhau là xong đó.