Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài 2: Restore : a;b;c không âm thỏa \(a^2+b^2+c^2=1\)
Tìm Min & Max của \(M=\left(a+b+c\right)^3+a\left(2bc-1\right)+b\left(2ac-1\right)+c\left(2ab-1\right)\)
Bài 4: Tương đương giống hôm nọ thôi : V
Bài 5 : Thiếu ĐK thì vứt luôn : V
Bài 7: Tương đương
( Hoặc có thể AM-GM khử căn , sau đó đổi \(\left(a;b;c\right)\rightarrow\left(\dfrac{x}{y};\dfrac{y}{z};\dfrac{z}{x}\right)\) rồi áp dụng bổ đề vasile)
Bài 8 : Đây là 1 dạng của BĐT hoán vị
@Ace Legona @Akai Haruma @Hung nguyen @Hà Nam Phan Đình @Neet
Lời giải
a) c/m \(f\left(x\right)=x^2-ax-3bc+\dfrac{a^2}{3}>0\forall x\)
\(\Delta_{x_{a,b,c}}=a^2+12bc-\dfrac{4}{3}a^2=\dfrac{-a^2+36bc}{3}\)
\(\Delta=\dfrac{-a^3+36}{3a}\)
\(a^3>36\Rightarrow\left\{{}\begin{matrix}a>0\\-a^3+36< 0\end{matrix}\right.\) \(\Rightarrow\dfrac{-36a^3+36}{3a}< 0\)
\(\Rightarrow\) F(x) vô nghiệm => f(x)>0 với x => dpcm
b)
\(\dfrac{a^2}{3}+b^2+c^2>ab+bc+ca\)\(\Leftrightarrow\dfrac{a^2}{3}+b^2+c^2-ab-bc-ac>0\)
\(\Leftrightarrow\left(b+c\right)^2-a\left(b+c\right)-3bc+\dfrac{a^2}{3}>0\)
Từ (a) =>\(f\left(b+c\right)=\left(b+c\right)^2-a\left(b+c\right)-3bc+\dfrac{a^2}{3}>0\) => dccm
Ta có \(2\left(x+y\right)=z\left(xy-7\right)\), do x,y,z là các số dương nên xy-7>0.
Khi đó, từ giả thiết ta được : \(z=\frac{2\left(x+y\right)}{xy-7}\)
Suy ra \(S=f\left(x;y\right)=2x+y+\frac{4\left(x+y\right)}{xy-7}\) với điều kiện \(x>0;y>0,xy>7\) (*)
Với mỗi x cố định, xét đạo hàm của hàm số \(f\left(x;y\right)\) theo ẩn y ta được :
\(f'_y\left(x;y\right)=1+\frac{4\left(xy-7\right)-4x\left(x+y\right)}{\left(xy-7\right)^2}=1-\frac{28+4x^2}{\left(xy-7\right)^2}\)
\(f'_y\left(x;y\right)=0\Leftrightarrow x^2y^2-14xy+21-4x^2=0\)
\(\Leftrightarrow y_0=\frac{7}{x}+2\sqrt{1+\frac{7}{x^2}}\)
Suy ra \(f\left(x;y_0\right)=2x+\frac{11}{x}+4\sqrt{1+\frac{7}{x^2}}\)
Xét hàm số : \(g\left(x\right)=2x+\frac{11}{x}+4\sqrt{1+\frac{7}{x^2}}\) với x>0, với \(g'\left(x\right)=2-\frac{11}{x^2}-\frac{28}{x^3\sqrt{1+\frac{7}{x^2}}}\)
\(g'\left(x\right)=0\Leftrightarrow x=3\)
Khi đó \(g\left(x\right)\ge g\left(3\right)\Leftrightarrow g\left(x\right)\ge15\)
Với điều kiện (*), ta có \(S\ge f\left(x;y_0\right)=g\left(x\right)\ge15\)
Vậy MinS=15 khi x=3, y=5, z=2
\(B=1!+2.2!+3.3!+...+k.k!\)
\(=1!+\left(3-1\right)2!+\left(4-1\right)3!+...+\left(k+1-1\right)k!\)
\(=1!+3!-2!+4!-3!+...+\left(k+1\right)!-k!\)
\(=\left(k+1\right)!-1\)
\(C=\frac{2-1}{2!}+\frac{3-1}{3!}+\frac{4-1}{4!}+...+\frac{n-1}{n!}\)
\(=\frac{2}{2!}-\frac{1}{2!}+\frac{3}{3!}-\frac{1}{3!}+\frac{4}{4!}-\frac{1}{4!}+...+\frac{n}{n!}-\frac{1}{n!}\)
\(=1-\frac{1}{2!}+\frac{1}{2!}-\frac{1}{3!}+\frac{1}{3!}-\frac{1}{4!}+...+\frac{1}{\left(n-1\right)!}-\frac{1}{n!}\)
\(=1-\frac{1}{n!}\)
2.
Với \(n=0\Rightarrow1\ge\frac{1}{2}\) đúng
Với \(n=1\Rightarrow1\ge1\) đúng
Giả sử BĐT đúng với \(n=k\ge2\) hay \(k!\ge2^{k-1}\)
Ta cần chứng minh nó cũng đúng với \(n=k+1\) hay \(\left(k+1\right)!\ge2^k\)
Thật vậy, ta có:
\(\left(k+1\right)!=k!\left(k+1\right)\ge2^{k-1}.\left(k+1\right)>2^{k-1}.2=2^k\) (đpcm)
Ta đổi chiều bất đẳng thức, khi đó bất đẳng thức cần chứng minh tương đương với:
\(18\left(\frac{a^3}{1+a^3}+\frac{b^3}{1+b^3}+\frac{c^3}{1+c^3}\right)+\left(a+b+c\right)^3\ge54\)
Để ý abc=1 thì \(\frac{a^3}{1+a^3}=\frac{a^3}{abc+a^3}=\frac{a^2}{bc+a^2}\)nên bất đẳng thức trên thành:
\(18\left(\frac{a^2}{bc+a^2}+\frac{b^2}{ca+b^2}+\frac{c^2}{ab+c^2}\right)+\left(a+b+c\right)^3\ge54\)
Lại cũng từ \(abc=1\) ta có \(\left(a+b+c\right)^3\ge27abc=27\), do đó ta sẽ chứng minh được khi ta chỉ ra được:
\(\frac{a^2}{bc+a^2}+\frac{b^2}{ca+b^2}+\frac{c^2}{ab+c^2}\ge\frac{3}{2}\)
Vế trái của đánh giá trên áp dụng bất đẳng thức Bunhiacopxki dạng phân thức. Lúc này ta được:
\(\frac{a^2}{bc+a^2}+\frac{b^2}{ca+b^2}+\frac{c^2}{ab+c^2}\ge\frac{\left(a+b+c\right)^2}{a^2+b^2+c^2+ab+bc+ca}\)
Tuy nhiên để đến khi \(a=b=c=1\) thì:
\(\frac{18\left(a+b+c\right)^2}{a^2+b^2+c^2+ab+bc+ca}=\left(a+b+c\right)^3=27\)
Ta sử dụng bất đẳng thức Cauchy dạng \(x+y\ge2\sqrt{xy}\), khi đó ta được:
\(\frac{18\left(a+b+c\right)^2}{a^2+b^2+c^2+ab+bc+ca}+\left(a+b+c\right)^3\ge\sqrt{\frac{18\left(a+b+c\right)^5}{a^2+b^2+c^2+ab+bc+ca}}\)
Chứng minh sẽ hoàn tất nếu ta chỉ được:
\(\sqrt{\frac{18\left(a+b+c\right)^5}{a^2+b^2+c^2+ab+bc+ca}}\ge54\Leftrightarrow\left(a+b+c\right)^5\ge\frac{81}{2}\left(a^2+b^2+c^2+ab+bc+ca\right)\)
Vậy theo bất đẳng thức Cauchy ta được:
\(\left(a+b+c\right)^6=\left[\left(a^2+b^2+c^2\right)+\left(ab+bc+ca\right)+\left(ab+bc+ca\right)\right]^3\)
\(\ge27\left(a+b+c\right)^2\left(ab+bc+ca\right)^2\ge81abc\left(a^2+b^2+c^2\right)\left(a+b+c\right)\)
\(=81\left(a^2+b^2+c^2\right)\left(a+b+c\right)\)
Khi đó ta được:
\(\left(a+b+c\right)^5\ge81\left(a^2+b^2+c^2\right)\)
Vậy ta cần chỉ ra rằng:
\(2\left(a^2+b^2+c^2\right)\ge a^2+b^2+c^2+ab+bc+ca\)
Vậy bất đẳng thức trên tương đương với \(\left(a-b\right)^2+\left(b-c\right)^2+\left(c-a\right)^2\ge0\), là một bất đẳng thức hiển nhiên đúng.
Vậy bất đẳng thức được chứng minh, dấu đẳng thức xảy ra khi \(a=b=c=1\)