Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1) Ta có : \(S=\overline{abc}+\overline{bca}+\overline{cab}=111a+111b+111c=111\left(a+b+c\right)=3.37.\left(a+b+c\right)\)
Giải sử S là số chính phương
=> 3(a + b + c ) \(⋮\) 37
Vì 0 < (a + b + c ) \(\le27\)
=> Điều trên là vô lý
Vậy S không là số chính phương
2/ Gọi số đó là abc
Có: \(\overline{abc}-\overline{cba}=\left(100a+10b+c\right)-\left(100c+10b+a\right)\)
\(=100a+10b+c-100c-10b-a=99a-99c=99\left(a-c\right)\)
Sau đó phân tích 99 ra thành các tích của các số và tìm \(a-c\) sao cho \(99\left(a-c\right)\)là một số chính phương (\(a;c\in N\)và \(a-c\le9\)
Ta có :
Nếu \(\overline{abc}\)chia hết cho 37 thì 100a + 10b + c chia hết cho 37
→ 1000a + 100b + 10c chia hết cho 37
→ 1000a - 999a + 100b + 10c chia hết cho 7
→ 100b + 10c + a chia hết cho 7 ( bca chia hết cho 7 )
Nếu \(\overline{bca}\)chia hết cho 7 thì ............
Bạn làm tương tự như trên nhé
Ta có : A = abcdeg - (abc+deg)
= abc.1000 + deg - abc - deg
= abc.999
= abc.27.37
=> A chia hết cho 37
Vì abc + deg chia hết cho 37 mà A chia hết cho 37 nên abcdeg chia hết cho 37
\(\overline{abc}+\overline{deg}⋮37\)
\(\overline{abcdeg}=1000\cdot\overline{abc}+deg\)
\(\Rightarrow999\cdot\overline{abc}+\overline{abc}+\overline{deg}\)
\(\Rightarrow\left(\overline{abc}\cdot27\cdot37\right)+\overline{abc}+\overline{deg}\)
Do \(\overline{abc\cdot37\cdot27⋮37}\)nên \(\overline{abcdeg}⋮37\)
S=abc+bca+cab
=100a+10b+c+100b+10c+a+100c+10a+b
=111a+111b+111c
=111(a+b+c)
giả sử S là số chính phương
=>a+b+c=111.k2 (k khác 0)
mà a+b+c<28=>S không phải là số chính phương
vậy không có S
\(S=\overline{abc}+\overline{bca}+\overline{cab}\)
\(S=100a+10b+c+100b+10c+a+100c+10a+b\)
\(S=111a+111b+111c\)
\(S=111\left(a+b+c\right)\)
\(S=37.3.\left(a+b+c\right)\)
Để \(S\) là số chính phương thì \(3\left(a+b+c\right)\) là một lũy thừa của \(37\) với số mũ lẻ
\(\Rightarrow\)\(3\left(a+b+c\right)⋮37\)\(\Rightarrow\)\(a+b+c⋮37\)
Mà \(3\le a+b+c\le27\) nên \(a+b+c⋮̸37\)
Vậy \(S\) không là số chính phương
Chúc bạn học tốt ~
Ta có \(abc⋮37\)
\(\Rightarrow100a+10b+c⋮37\)
\(\Rightarrow1000a+100b+10c⋮37\)
\(\Rightarrow1000a-999a+100b+10c⋮37\)( Vì \(999a⋮37\))
\(\Rightarrow100b+10c+a⋮37\)
\(\Rightarrow bca⋮37\)
Ta có : \(bca⋮37\)
\(\Rightarrow100b+10c+a⋮37\)
\(\Rightarrow1000b-999b+100c+10a⋮37\)( Vì \(999b⋮37\))
\(\Rightarrow100c+10a+b⋮37\)
hay \(cab⋮37\left(đpcm\right)\)