Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Cho tam giác ABC vuông tại A, kẻ AH vuông góc với BC (H thuộc BC), gọi M là trung điểm của BC. Trên tia đối của MA lấy D sao cho DM=MA, trên tia đối cảu CD lấy điểm I sao cho CI=CA. qua I kẻ đường thẳng song song với AC cắt đường thẳng AH tại E
a) CMR: AE=BC
b) tam giác ABC cần điều kiện nào để HE lớn nhất. vì sao??
Câu 1.
Tìm a,b để \(x^3+ax+b\)chia \(x+1\)dư 7 và chia cho \(x-3\)dư -5.
- Thương của phép chia đa thức bậc 3 \(x^3+ax+b\)cho \(x+1\)là 1 đa thức bậc 2 có hệ số bậc 2 bằng 1, tổng quát ở dạng: \(x^2+mx+n\).
- Số dư của phép chia này là 7 nên ta có:
\(x^3+ax+b=\left(x+1\right)\left(x^2+mx+n\right)+7\mid\forall x\in R\)
\(\Leftrightarrow x^3+ax+b=x^3+\left(m+1\right)x^2+\left(m+n\right)x+n+7\mid\forall x\in R\)
Để 2 đa thức này bằng nhau với mọi x thuộc R thì hệ số các bậc phải bằng nhau. Đồng nhất chúng ta có:
\(\hept{\begin{cases}m+1=0\\m+n=a\\n+7=b\end{cases}\Rightarrow\hept{\begin{cases}m=-1\\n=a+1\\b=a+1+7\end{cases}\Rightarrow}b=a+8\mid\left(1\right)}\)
- Tương tự với phép chia \(x^3+ax+b\)cho \(x-3\)dư -5.
\(x^3+ax+b=\left(x-3\right)\left(x^2+px+q\right)-5\mid\forall x\in R\)
\(\Leftrightarrow x^3+ax+b=x^3+\left(p-3\right)x^2+\left(q-3p\right)x-\left(3q+5\right)\mid\forall x\in R\)
\(\Rightarrow\hept{\begin{cases}p-3=0\\q-3p=a\\-\left(3q+5\right)=b\end{cases}\Rightarrow\hept{\begin{cases}p=3\\q=a+9\\b=-\left(3\left(a+9\right)+5\right)\end{cases}\Rightarrow}b=-3a-32\mid\left(2\right)}\)
- Từ (1) và (2) ta có:
\(\hept{\begin{cases}b=a+8\\b=-3a-32\end{cases}\Rightarrow a+8=-3a-32\Rightarrow\hept{\begin{cases}a=-10\\b=-2\end{cases}}}\)
- Vậy với \(a=-10;b=-2\)thì đa thức đã cho trở thành \(x^3-10x-2\)chia cho \(x+1\)dư 7 và chia cho \(x-3\)dư -5.
- Viết kết quả các phép chia này ta được:
\(\hept{\begin{cases}x^3-10x-2=\left(x+1\right)\left(x^2-x-9\right)+7\\x^3-10x-2=\left(x-3\right)\left(x^2+3x-1\right)-5\end{cases}\mid\forall x\in R}\)
Giả sử 1 \(<\) x \(\le\)y. Đặt x+1=yk ( k là một là một số tự nhiên khác 0)
Ta có : x+1 = yk \(\le\) y+1 \(<\) y+y = 2y
=> yk \(<\) 2y
=> k\(<\) 2
Mà k là một là một số tự nhiên khác 0
Nên k=1
Thay k = x+1 vào y+1 ta được
x+1+1 = x+2 chia hết cho x
Mà x chia hết cho x nên 2 chia hết cho x
=> x\(\in\left\{1;2\right\}\)
Với x=1 thì y=x+1=1+1=2
Với x=2 thì y=2+1=3
Vậy các cặp số (x;y) thỏa mãn : (1;2) ; (2;3)
Ta có:
A = k4 + 2k³ - 16k² - 2k + 15
= k4 + 5k³ - 3k³ - 15k² - k² - 5k + 3k + 15
= ( k³ - 3k² - k + 3 ).( k + 5)
= (k² - 1).(k - 3).(k + 5)
Để A ⁞ 16
thì có nhiều trường hợp xảy ra.
TH1: A = 0 <=> k = { ±1 ; 3 ; - 5}
TH2:
Với k là số lẻ thì (k² - 1 ) ⁞ 8
cái này mình sẽ cm:
k² - 1 = (k - 1).(k + 1)
Với k là số lẻ thì k -1 và k + 1 là 2 số chẵn liên tiếp. Trong đó có 1 số chia hết cho 2 và 1 số chia
hết cho 4 => (k - 1).(k + 1) ⁞ 8
Đồng thời, với k lẻ thì k -1 hoặc k + 5 đều chia hết cho 2.
=> Tích sẽ chia hết cho 8 x 2 = 16
Vậy A ⁞ 16 <=> k là số lẻ.
Dễ thấy, TH2 bao hàm TH1 => Ta kết luận k là số lẻ thì A ⁞ 16
***Kiểm tra:
Với k là số chẵn => (k² - 1) là số lẻ
k - 3 là số lẻ
k + 5 cũng là số lẻ
=> A = (k² - 1).(k - 3).(k + 5) là số lẻ ko chia hết cho 16.