K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

21 tháng 7 2015

\(A = {6n-1\over 3n+2} \),A là số nguyên nên 6n-1 phải chia hết cho 3n+2. Suy ra 3n+2 là ước của 6n-1 =  \({\pm 1 , \pm (6n-1)}\)

.với 3n+2 =1 => n=\(x = {-1\ \ \over 3}\) (loại)

.Với 3n+2= -1=> n= -1 => A= 7 ( thỏa mãn )

.với 3n +2 =6n-1 => n = 1 => A = 1 (Thỏa mãn )

.với 3n+2 =1-6n => n=\(x = {-1 \ \over 9}\) (loại )

Kết luận vậy n = { -1,1 }

19 tháng 3 2016

bài lớp 6 học sinh giỏi đấy

31 tháng 8 2021

A=5-2n/6n+1 nha mn

Để\(A\inℤ\)

thì\(n+2⋮n-3\Leftrightarrow\left(n-3\right)+5⋮n-3\Rightarrow5⋮n-3\)

\(\Leftrightarrow n-3\inƯ\left(5\right)\Leftrightarrow n\in\left\{4;8;2;-2\right\}\)

23 tháng 7 2019

a, Ta có : \(A=\frac{n+2}{n-3}=\frac{n-3+5}{n-3}=1+\frac{5}{n-3}\)

Để A có giá trị nguyên thì : \(\frac{5}{n-3}\)phải có giá trị nguyên.

Lại có : \(\frac{5}{n-3}\)có giá trị nguyên khi và chỉ khi : \(5:n-3\)

\(\Rightarrow n-3\inƯ\left(5\right)=\left\{-5;-1;1;5\right\}\)

\(\Rightarrow n\in\left\{-2;2;4;8\right\}\)

Vậy:............

b, Để A đạt giá trị lớn nhất thì : \(1+\frac{5}{n-3}\)đạt giá trị lớn nhất

\(1+\frac{5}{n-3}\)lớn nhất khi và chỉ khi : \(\frac{5}{n-3}\)lớn nhất

Khi đó : \(n-3\)nhỏ nhất 

Do : \(n-3\ne0\Rightarrow n-3=1\Rightarrow n=4\)

Vậy :......

14 tháng 5 2017

Đề A đạt giá trị nguyên

=> 3n + 9 chia hết cho n - 4

3n - 12 + 12 + 9 chia hết cho n - 4

3.(n - 4) + 2c1 chia hết cho n - 4

=> 21 chia hết cho n - 4

=> n - 4 thuộc Ư(21) = {1 ; -1 ; 3 ; -3 ; 7 ; -7 ; 21 ; -21}

Thay n - 4 vào các giá trị trên như

n - 4 = 1

n - 4 = -1

....... 

Ta tìm được các giá trị : 

n = {5 ; 3 ; 7 ; -1 ; 11 ; -3 ; 25 ; -17}

14 tháng 5 2017

a) Để A thuộc Z           (A nguyên)

=> 3n+9 chia hết cho n-4

hay 3n+9-12+12 chia hết cho n-4                   (-12+12=0)

      3n-12+9+12 chia hết cho n-4

     3n-12+21 chia hết cho n-4

     3(n-4)+21 chia hết cho n-4

Vì 3(n-4) luôn chia hết cho n-4 với mọi n thuộc Z=> 21 chia hết cho n-4

mà Ư(21)={21;1;7;3} nên ta có bảng:

n-421137
n25 (tm)5 (tm)7 (tm)11 (tm)

Vậy n={25;5;7;11} thì A nguyên.

b)

Để B thuộc Z           (B nguyên)

=> 6n+5 chia hết cho 2n-1

hay 6n+5-3+3 chia hết cho 2n-1                   (-3+3=0)

      6n-3+5+3 chia hết cho 2n-1

     6n-3+8 chia hết cho 2n-1

     3(2n-1)+8 chia hết cho 2n-1

Vì 3(2n-1) luôn chia hết cho 2n-1 với mọi n thuộc Z=> 8 chia hết cho 2n-1

mà Ư(8)={8;1;2;4} nên ta có bảng:

2n-18124
n4.5 (ktm)1 (tm)1.5 (ktm)2.5 (ktm)

Vậy, n=1 thì B nguyên.

29 tháng 6 2015

a) \(A\) nhỏ nhất \(\Leftrightarrow\) x + 1 nhỏ nhất và x - 3 lớn nhất Mà x thuộc N ; x - 3 \(\ne\) 0  nên \(\Leftrightarrow\) x =  4. Khi đó \(A=\frac{4+1}{4-3}=5\) có GTNNN

b) \(A=\frac{x+1}{x-3}=\frac{x-3+4}{x-3}=1+\frac{4}{x-3}\) nguyên \(\Leftrightarrow x-3\inƯ\left(4\right)\)

\(\Leftrightarrow x-3\in\left\{-4;-2;-1;1;2;4\right\}\)

\(\Leftrightarrow x\in\left\{-1;1;2;4;5;7\right\}\)

15 tháng 8 2017
nhanh lên các bạn
23 tháng 8 2015

3n+3/n-4=3n+3/3n-12=3n-12+15/3n-12

=1+15/3n-12

=>15chia hết cho 3n-12

 

=>3n-12 thuộc Ư(15)

bạn tự tính tieép

29 tháng 6 2016

\(A=\frac{3n-5}{n+4}=\frac{3\left(n+4\right)-17}{n+4}=\frac{3\left(n+4\right)}{n+4}-\frac{17}{n+4}=3-\frac{17}{n+4}\in Z\)

\(\Rightarrow17⋮n+4\)

\(\Rightarrow n+4\inƯ\left(17\right)=\left\{1;-1;17;-17\right\}\)

\(\Rightarrow n\in\left\{-3;-5;13;-21\right\}\)

29 tháng 6 2016

Ta có:\(A\in Z\Leftrightarrow\frac{3n-5}{n+4}\in Z\Leftrightarrow\frac{3n+12-17}{n+4}\in Z\Leftrightarrow\frac{3\left(n+4\right)}{n+4}-\frac{17}{n+4}\in Z\Leftrightarrow3-\frac{17}{n+4}\in Z\Leftrightarrow\frac{-17}{n+4}\in Z\)

\(\Leftrightarrow n+4\inƯ17\Leftrightarrow n+4\in\left\{-1;-17;1;17\right\}\)

Thay \(n+4=-1\Rightarrow n=-5\)  (TM)

\(n+4=-17\Rightarrow n=-21\)  (TM)

\(n+4=1\Rightarrow n=-3\)  (TM)

\(n+4=17\Rightarrow n=13\)  (TM)

Vậy \(n\in\left\{-21;-5;-3;13\right\}\) thì \(A\in Z\)