K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

30 tháng 1 2022

phương trình j

30 tháng 1 2022

phương trình nào vậy bn?

4 tháng 7 2021

ĐK: `x \ne kπ`

`cot(x-π/4)+cot(π/2-x)=0`

`<=>cot(x-π/4)=-cot(π/2-x)`

`<=>cot(x-π/4)=cot(x-π/2)`

`<=> x-π/4=x-π/2+kπ`

`<=>0x=-π/4+kπ` (VN)

Vậy PTVN.

1 tháng 8 2021

hahihihihi

30 tháng 7 2021

Giống nhau tất thảy.

NV
30 tháng 7 2021

k ở đây được hiểu là "một số nguyên bất kì", giống hay khác nhau đều được

Ví dụ: 

\(sinx=\dfrac{1}{2}\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{\pi}{6}+k2\pi\\x=\dfrac{5\pi}{6}+k2\pi\end{matrix}\right.\)

Thì "k" trong \(\dfrac{\pi}{6}+k2\pi\) và "k" trong \(\dfrac{5\pi}{6}+k2\pi\) không liên quan gì đến nhau (nó chỉ là 1 kí hiệu, có thể k trên bằng 0, k dưới bằng 100 cũng được, không ảnh hưởng gì, cũng có thể 2 cái bằng nhau cũng được).

Khi người ta ghi 2 nghiệm đều là "k2pi" chủ yếu do... lười biếng (kiểu như mình). Trên thực tế, rất nhiều tài liệu cũ họ ghi các kí tự khác nhau, ví dụ 1 nghiệm là \(\dfrac{\pi}{6}+k2\pi\), 1 nghiệm là \(\dfrac{5\pi}{6}+n2\pi\) để tránh học sinh phát sinh hiểu nhầm đáng tiếc rằng "2 cái k phải giống hệt nhau về giá trị". 

NV
24 tháng 4 2022

Đề bài là: \(sin^2\left(\dfrac{\pi}{8}+a\right)-sin^2\left(\dfrac{\pi}{8}-a\right)-\dfrac{\sqrt{2}}{2}sin2a\) đúng không nhỉ?

\(=\dfrac{1}{2}-\dfrac{1}{2}cos\left(\dfrac{\pi}{4}+2a\right)-\dfrac{1}{2}+\dfrac{1}{2}cos\left(\dfrac{\pi}{4}-2a\right)-\dfrac{\sqrt{2}}{2}sin2a\)

\(=\dfrac{1}{2}\left[cos\left(\dfrac{\pi}{4}-2a\right)-cos\left(\dfrac{\pi}{4}+2a\right)\right]-\dfrac{\sqrt{2}}{2}sin2a\)

\(=sin\left(\dfrac{\pi}{4}\right).sin2a-\dfrac{\sqrt{2}}{2}sin2a=\dfrac{\sqrt{2}}{2}sin2a-\dfrac{\sqrt{2}}{2}sin2a=0\)

20 tháng 9 2016

đề đúng không vậy

AH
Akai Haruma
Giáo viên
24 tháng 7 2020

Lê Huy Hoàng:

a) ĐK: $x\in\mathbb{R}\setminus \left\{k\pi\right\}$ với $k$ nguyên

PT $\Leftrightarrow \tan ^2x-4\tan x+5=0$

$\Leftrightarrow (\tan x-2)^2+1=0$

$\Leftrightarrow (\tan x-2)^2=-1< 0$ (vô lý)

Do đó pt vô nghiệm.

AH
Akai Haruma
Giáo viên
24 tháng 7 2020

c)

ĐK:.............

PT $\Leftrightarrow 1+\frac{\sin ^2x}{\cos ^2x}-1+\tan x-\sqrt{3}(\tan x+1)=0$

$\Leftrightarrow \tan ^2x+\tan x-\sqrt{3}(\tan x+1)=0$

$\Leftrightarrow \tan ^2x+(1-\sqrt{3})\tan x-\sqrt{3}=0$

$\Rightarrow \tan x=\sqrt{3}$ hoặc $\tan x=-1$

$\Rightarrow x=\pi (k-\frac{1}{4})$ hoặc $x=\pi (k+\frac{1}{3})$ với $k$ nguyên

d)

ĐK:.......

PT $\Leftrightarrow \tan x-\frac{2}{\tan x}+1=0$

$\Leftrightarrow \tan ^2x+\tan x-2=0$

$\Leftrightarrow (\tan x-1)(\tan x+2)=0$

$\Rightarrow \tan x=1$ hoặc $\tan x=-2$

$\Rightarrow x=k\pi +\frac{\pi}{4}$ hoặc $x=k\pi +\tan ^{-2}(-2)$ với $k$ nguyên.

7 tháng 6 2021

\(\dfrac{1}{2}sin6x\ne0\)\(\Leftrightarrow sin6x\ne0\) \(\Leftrightarrow6x\ne k\pi\)\(\Leftrightarrow x\ne\dfrac{k\pi}{6}\)

\(\dfrac{1}{2}\ne0\) rồi nên chỉ cần \(sin6x\ne0\)

2 tháng 7 2021

\(2sin^2\dfrac{x}{2}=cos5x+1\)

\(\Leftrightarrow-cos5x=1-2.sin^2\dfrac{x}{2}\)

\(\Leftrightarrow-cos5x=cosx\)

\(\Leftrightarrow cos\left(5x\right)=cos\left(\pi-x\right)\)

\(\Leftrightarrow\left[{}\begin{matrix}5x=\pi-x+k2\pi\\5x=-\pi+x+k2\pi\end{matrix}\right.\)\(\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{\pi}{6}+\dfrac{k\pi}{3}\\x=-\dfrac{\pi}{4}+\dfrac{k\pi}{2}\end{matrix}\right.\) (k nguyên)

Vậy..

28 tháng 10 2023

\(sin^2x+cos^2x=1\)

=>\(sin^2x=1-\dfrac{9}{16}=\dfrac{7}{16}\)

=>\(\left[{}\begin{matrix}sinx=\dfrac{\sqrt{7}}{4}\\sinx=-\dfrac{\sqrt{7}}{4}\end{matrix}\right.\)

\(A=sin\left(x+\dfrac{\Omega}{3}\right)=sinx\cdot cos\left(\dfrac{\Omega}{3}\right)+cosx\cdot sin\left(\dfrac{\Omega}{3}\right)\)

\(=\dfrac{1}{2}\cdot sinx+cosx\cdot\dfrac{\sqrt{3}}{2}\)

\(=\dfrac{1}{2}\cdot sinx+\dfrac{-3\sqrt{3}}{8}\)

TH1: \(sinx=\dfrac{\sqrt{7}}{4}\)

=>\(A=\dfrac{1}{2}\cdot\dfrac{\sqrt{7}}{4}-\dfrac{3\sqrt{3}}{8}=\dfrac{\sqrt{7}-3\sqrt{3}}{8}\)

TH2: \(sinx=-\dfrac{\sqrt{7}}{4}\)

=>\(A=\dfrac{-1}{2}\cdot\dfrac{\sqrt{7}}{4}-\dfrac{3\sqrt{3}}{8}=\dfrac{-\sqrt{7}-3\sqrt{3}}{8}\)

\(B=sin\left(x-\dfrac{\Omega}{3}\right)=sinx\cdot cos\left(\dfrac{\Omega}{3}\right)-cosx\cdot sin\left(\dfrac{\Omega}{3}\right)\)

\(=sinx\cdot\dfrac{1}{2}-cosx\cdot\dfrac{\sqrt{3}}{2}\)

\(=\dfrac{1}{2}\cdot sinx+\dfrac{3\sqrt{3}}{8}\)

TH1: \(sinx=-\dfrac{\sqrt{7}}{4}\)

=>\(B=\dfrac{1}{2}\cdot\dfrac{-\sqrt{7}}{4}+\dfrac{3\sqrt{3}}{8}=\dfrac{3\sqrt{3}-\sqrt{7}}{8}\)

TH2: \(sinx=\dfrac{\sqrt{7}}{4}\)

=>\(B=\dfrac{1}{2}\cdot\dfrac{\sqrt{7}}{4}+\dfrac{3\sqrt{3}}{8}=\dfrac{3\sqrt{3}+\sqrt{7}}{8}\)