Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
S=1-3+32-...+398-399 (1)
=>3S=3-32+33+...+399-3100(2)
Từ 1 và 2 =>4S=1-3100
Do S chia hết cho -20 =>4S chia hết cho -20=>4S chia hết cho 4=>1-3100 chia hết cho 4
=>3100 chia 4 dư 1
S=1-3+32-...+398-399 (1)
=>3S=3-32+33+...+399-3100(2)
Từ 1 và 2 =>4S=1-3100
Do S chia hết cho -20 =>4S chia hết cho -20=>4S chia hết cho 4=>1-3100 chia hết cho 4
=>3100 chia 4 dư 1
\(S=1-3+3^2-3^3+...+3^{98}-3^{99}\)
\(\Rightarrow3S=3-3^2+3^3-......+3^{99}-3^{100}\)
\(\Rightarrow3S+S=4S=1-3^{100}\)
Ta có:
\(S=1-3+3^2-3^3+...+3^{98}-3^{99}\)
\(\Rightarrow9S=3^2-3^3+3^5-3^7+...+3^{100}-3^{101}\)
\(\Rightarrow9S-S=\left(3^2-3^3+3^5-3^7+...+3^{100}-3^{101}\right)+\left(1-3+3^2-3^3+...+3^{98}-3^{99}\right)\)
\(\Rightarrow8S=3^{101}-1\)
\(\Rightarrow S=\left(3^{101}-1\right):8\)
\(\Rightarrow S=\left(3^{101}-1\right):8⋮4\) ( \(8⋮4\) )
\(\Rightarrow3^{101}-1⋮4\)
\(\Rightarrow3^{101}\) chia 4 dư 1
S=1-3+32-...+398-399 (1)
=>3S=3-32+33+...+399-3100(2)
Từ 1 và 2 =>4S=1-3100
Do S chia hết cho -20 =>4S chia hết cho -20=>4S chia hết cho 4=>1-3100 chia hết cho 4
=>3100 chia 4 dư 1
\(\left(x-7\right).\left(x+3\right)< 0\)
TH1: \(\hept{\begin{cases}x-7< 0=>x< 0+7=>x< 7\\x+3>0=>x>0-3=>x>-3\end{cases}}\)
=> x thuộc {-2;-1;0;1;2;3;4;5;6}
TH2: \(\hept{\begin{cases}x-7>0=>x>0+7=>x>7\\x+3< 0=>x< 0-3=>x< -3\end{cases}}\)
=> x thuộc rỗng
(x - 7) . (x + 3) < 0
Trường hợp 1 : x - 7 > 0 và x + 3 < 0
x - 7 > 0 => x > 7
x + 3 < 0 => x < -3
=> 7 < x < -3 (vô lý nên loại)
Trường hợp 2 : x - 7 < 0 và x + 3 > 0
x - 7 < 0 => x < 7
x + 3 > 0 => x > -3
=> -3 < x < 7 (thỏa mãn)
Vậy x thuộc {-2 ; -1 ; 0 ; 1 ; 2 ; 3 ; 4 ; 5 ; 6}
ko biết
S=1-3+3\(^2\)-....+3\(^{98}\)-3\(^{99}\)(1)
\(\Rightarrow\)3S=3-3\(^2\)+3\(^3\)+...+3\(^{99}\)-3\(^{100}\)(2)
Từ(1)và(2)\(\Rightarrow\)4S=1-3\(^{100}\)
Do S chia hết cho -20\(\Rightarrow\)4S chia hết cho -20
\(\Rightarrow\)4S chia hết cho 4\(\Rightarrow\)1-3\(^{100}\)chia hết cho 4
\(\Rightarrow\)3\(^{100}\)chia hết 4 dư 1