K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

3 tháng 12 2017

Ta có : S=3+3^3+3^5+3^7+.....+3^2013+3^2015

             = ( 3 + 3^3 + 3^5 ) + ( 3^7 + 3^9 + 3^11)+.....+( 3^2011 + 3^2013 + 3^2015)

             = 3.(1+3^2+3^4)+3^7.(1+3^2+3^4)+.....+3^2011.(1+3^2+3^4)

             = 3.91+3^7.91+......+3^2011.91

             = (3+3^7+.....+3^2011).91

Vì 91 chia hết cho 13 => (3+3^7+.....+3^2011).91 chia hết cho 13

Vậy S chia hết cho 13

27 tháng 3 2018

mơn mơn

1 tháng 10 2017

1) (5+54)+(52+55)+...........+(52003+52006)= 5(1+53)+52(1+53)+..............+52003(1+53)

= (5+52+..........+52003).126 ->S chia hết cho 126

2, 7+73+................+71997+71999 = 7(1+72)+..............+71997(1+72)

= (7+...............+71997).50-> chia hết cho 5

= 7(1+72+.......+71998) -> chia hết cho 7

-> chia hết cho 35

22 tháng 2 2023

tự lực mà làm mn đừng chỉ

 

18 tháng 12 2021

a: \(A=2\left(1+2+2^2\right)+...+2^{19}\left(1+2+2^2\right)\)

\(=7\left(2+...+2^{19}\right)⋮7\)

22 tháng 2 2023

tự làm nha

 

18 tháng 12 2021

a: \(A=2\left(1+2+2^2\right)+...+2^{19}\left(1+2+2^2\right)\)

\(=7\left(2+...+2^{19}\right)⋮7\)

17 tháng 12 2021

a: \(A=2\left(1+2+2^2\right)+...+2^{19}\left(1+2+2^2\right)\)

\(=7\cdot\left(2+...+2^{19}\right)⋮7\)

18 tháng 12 2021

gải giúp mình với

9 tháng 9 2017

*Ta có: A\(=2^1+2^2+2^3+2^4+...+2^{2010}\)

              \(=\left(2+2^2\right)+2^2\times\left(2+2^2\right)+...+2^{2008}\times\left(2+2^2\right)\)

              \(=\left(2+2^2\right)\times\left(1+2^2+2^3+...+2^{2008}\right)\)

              \(=6\times\left(2^2+2^3+...+2^{2008}\right)\)

              \(=3\times2\times\left(2^2+2^3+...+2^{2008}\right)\)

               \(\Rightarrow A⋮3\)

*Ta có: A \(=2^1+2^2+2^3+2^4+...+2^{2010}\)

               \(=2\times\left(1+2+2^2\right)+2^4\times\left(1+2+2^2\right)+...+2^{2008}\times\left(1+2+2^2\right)\)

               \(=\left(1+2+2^2\right)\times\left(2+2^4+2^7+...+2^{2008}\right)\)

               \(=7\times\left(2+2^4+2^7+...+2^{2008}\right)\)

                \(\Rightarrow A⋮7\)

Mình sửa lại đề C 1 chút xíu

*Ta có: C \(=3^1+3^2+3^3+3^4+...+3^{2010}\)

               \(=\left(3+3^2\right)+3^2\times\left(3+3^2\right)+...+3^{2008}\times\left(3+3^2\right)\)

               \(=\left(3+3^2\right)\times\left(1+3^2+3^3+...+3^{2008}\right)\)

               \(=12\times\left(1+3^2+3^3+...+3^{2008}\right)\)

               \(=4\times3\times\left(1+3^2+3^3+...+3^{2008}\right)\)

                \(\Rightarrow C⋮4\)

Các câu khác làm tương tự nhé. Chúc bạn học tốt!

10 tháng 12 2017

Thanks bạn

21 tháng 6 2019

#)Giải :

\(S=3+3^2+3^3+...+3^{2019}\)

\(S=\left(3+3^2+3^3\right)+\left(3^4+3^5+3^6\right)+...+\left(3^{2017}+3^{2018}+3^{2019}\right)\)

\(S=3\left(1+3+9\right)+3^2\left(1+3+9\right)+...+3^{2017}\left(1+3+9\right)\)

\(S=13\left(3+3^3+...+3^{2017}\right)\)chia hết cho 3 ( đpcm )

s = 3^1 +3^2 + 3^3 +....+ 3^2017 + 3^2018 + 3^2019

= ( 3^1 +3^2 + 3^3) +...+ ( 3^2017 + 3^2018 + 3^2019 )  (  2019 : 3 =673 # chia hết nên có thể ghép cặp như vậy)

= 3( 1+ 3 +3^2 )+ 3^4(  1+ 3 +3^2)+...+ 3^2017( 1+ 3 +3^2) ( háp dụng tính chất phân phối)

= 13( 3+ 3^4+....+3^2017) => chia hết cho 13

học tốt