K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

24 tháng 2 2023

S  = 3+ 32 + 33 + 34 +.....+ 32022

Xét dãy số : 1; 2; 3; 4; .....;2022

Dãy số trên có số số hạng : ( 2022 -1) : 1 + 1 = 2022 ( số hạng)

mà 2022 ⋮ 3

Vậy nhóm ba số hạng liên tiếp của tổng S thành một nhóm ta được:

S =(3 + 32+ 33)+ ( 34 + 35 + 36)+....+( 32020+32021+32022)

S = 3.( 1 + 3 + 32)+ 34.( 1+3+32)+....+32020.(1+3+32)

S = 3.13 + 34.13+ ......+32020.13

S = 13.( 3 + 34+....+32020)

13⋮ 13 ⇒ 13. ( 3+34+....+32020) ⋮ 13

 ⇒ S = 3+32+33+34+...+32022⋮13 (đpcm)

2 tháng 8 2023

\(S=5+5^2+5^3+5^4+...+5^{2022}\)

\(S=\left(5+5^2\right)+\left(5^3+5^4\right)+\left(5^5+5^6\right)+...+\left(5^{2021}+5^{2022}\right)\)

\(S=\left(5+5^2\right)+5^2\cdot\left(5+5^2\right)+5^4\cdot\left(5+5^2\right)+...+5^{2020}\cdot\left(5+5^2\right)\)

\(S=\left(5+5^2\right)\left(1+5^2+5^4+...+5^{2020}\right)\)

\(S=30\left(1+5^2+5^4+...+5^{2020}\right)\)

Vậy S chia hết cho 30

2 tháng 8 2023

S không thể chia hết cho 13 nhé

23 tháng 4 2023

Ta có S = 1 + 3 + 32 + 33 + ... + 357

3S = ( 1 + 3 ) + ( 32 + 33 ) + ... + ( 356 + 357 )

= 1( 1 + 3 ) + 32( 1 + 3 ) + ... + 356( 1 + 3 )

= 1 . 4 + 32 . 4 + ... + 356 . 4

= 4( 1 + 32 + ... + 356 ) ⋮ 4

Vậy A ⋮ 4

Lại có S = 1 + 3 + 32 + 33 + ... + 357 

S - 1 = 3 + 32 + 33 + ... + 357 

         = ( 3 + 32 + 33 ) + ( 34 + 3+ 36 ) + ... + ( 355 + 356 + 357 )

         = 3( 1 + 3 + 32 ) + 34( 1 + 3 + 32 ) + ... + 355( 1 + 3 + 32 ) 

         = 3 . 13 + 34 . 13 + ... + 355 . 13

         = 13( 3 + 34 + ... + 355 ) ⋮ 13

Vậy ( S - 1 ) ⋮ 13 ⇒ S không chia hết cho 13

Ta có S = 1 + 3 + 32 + 33 + ... + 357

3S = 3 + 32 + 33 + 34 + ... + 358

3S - S = ( 3 + 32 + 33 + 34 + ... + 356 ) - ( 1 + 3 + 32 + 33 + ... + 357 )

2S = 358 - 1 = 356 . 9 - 1 = ( 34 )14 . 9 - 1 = 8114 . 9 - 1 = ( ...9 ) - 1 = ( ...8 )

S = ( ...8 ) : 2 = ( ...4 )

Vậy chữ số tận cùng của S là 4

 
23 tháng 4 2023

mn giúp mình với

2 tháng 11 2016

s= 3+32+33+ ...+ 32016

= ( 3+32+33) + .....+( 32014+ 32015+32016)

= 3( 1+3+32)+.....+ 32014.( 1+3+32)

= (3+....+32014)(1+3+32)

= (3+....+32014)13 chia hết cho 13

câu còn lại nhốm 4 số nha

vì 3a+2b chia hết cho 17 nên (3a+2b)10 chia hết cho 17

ta có 10( 3a+2b) - 3( 10a+b) = 30a + 20b-30a-3b=17b chia hết cho 17 

=> 3( 10a+b) chia hết cho 17

=> 10a+b chia hết cho 17

27 tháng 12 2023

Số số hạng của S:

20 - 0 + 1 = 21 (số)

Do 21 ⋮ 3 nên ta có thể nhóm các số hạng của S thành từng nhóm mà mỗi nhóm có 3 số hạng như sau:

S = (1 + 3 + 3²) + (3³ + 3⁴ + 3⁵) + ... + (3¹⁸ + 3¹⁹ + 3²⁰)

= 13 + 3³.(1 + 3 + 3²) + ... + 3¹⁸.(1 + 3 + 3²)

= 13 + 3³.13 + ... + 3¹⁸.13

= 13.(1 + 3³ + ... + 3¹⁸) ⋮ 13

Vậy S ⋮ 13

27 tháng 12 2023

S= 1+3+32+33+34+...+319+320

S= (1+3+32) + (33+34+35) + ... + (318+319+320)

S= 13.1+ 32.(1+3+32) + 317.(1+3+32)

S= 13.1+32.13+317.13

S= 13.(1+32+317\(⋮\) 13

S\(⋮\) 13

Vậy S\(⋮\) 13

1 tháng 1 2022

giúp tôi với

 

1 tháng 1 2022

\(S=\left(3+3^2+3^3\right)+\left(3^4+3^5+3^6\right)+\left(3^7+3^8+3^9\right)\\ S=3\left(1+3+3^2\right)+3^4\left(1+3+3^2\right)+3^7\left(1+3+3^2\right)\\ S=\left(1+3+3^2\right)\left(3+3^4+3^7\right)=13\left(3+3^4+3^7\right)⋮13\)

\(S=3+3^2+3^3+3^4+...+3^{2021}\)

\(=3+9+\left(3^3+3^4+3^5\right)+...+\left(3^{2019}+3^{2020}+3^{2021}\right)\)

\(=12+3^3\left(1+3+3^2\right)+...+3^{2019}\left(1+3+3^2\right)\)

\(=12+13\left(3^3+3^6+...+3^{2019}\right)\)

=>S không chia hết cho 13