K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

8 tháng 7 2018

Ta có : 

\(S=1+5+5^2+5^3+5^4+5^5+5^6+5^7+5^8+5^9\)

\(\Rightarrow S=1+\left(5+5^2+5^3\right)+\left(5^4+5^5+5^6\right)+\left(5^7+5^8+5^9\right)\)

\(\Rightarrow S=1+5\left(1+5+5^2\right)+5^4\left(1+5+5^2\right)+5^7\left(1+5+5^2\right)\)

\(\Rightarrow S=1+5.31+5^4.31+5^7.31\)

\(\Rightarrow S=1+31\left(5+5^4+5^7\right)\)

Vậy \(S:31\)dư \(1\)

8 tháng 7 2018

\(S=1+5+5^2+5^3+...+5^9\)

Đặt  \(A=5+5^2+5^3+...+5^9\)

            \(=\left(5+5^2+5^3\right)+...+\left(5^7+5^8+5^9\right)\)

             \(=\left(5.1+5.5+5.5^2\right)+...+\left(5^7.1+5^7.5+5^7.5^2\right)\)

               \(=5.\left(1+5+5^2\right)+...+5^7.\left(1+5+5^2\right)\)

                \(=5.31+...+5^7.31\)

                 \(=\left(5+5^7\right).31\)

Thay A vào S, ta có:

\(S=1+\left(5+5^7\right).31\)

Vì \(\left(5+5^7\right).31⋮31\)mà    \(S=1+\left(5+5^7\right).31\)

Suy ra  S  chia cho 31 dư 1.

hok tốt nha !

12 tháng 2 2018

S=1+5^2+5^3+...+5^2010
S=1+(5^1+5^2)+...+(5^2009+5^2010)
S=1+5(1+5)+5^3(1+5)+...+5^2009(1+5)
S=1+5.6+5^3.6+...+5^2009.6
S=1+6(5+5^3+5^5+...+5^2009)
Ta có 6(5+5^3+...+5^2009) chia hết cho 2 nên S chia 2 dư 1
S=1+6(5+...+5^2009)=1+6.5(1+5^2+5^4+...+5^2008)
S=1+30(5^2+...+5^2008)
Ta có 30(1+5^2+...+5^2008) chia hết cho 10 nên S chia 10 dư 1

5 tháng 4 2018

THIẾU CHIA CHO 13 KÌA

17 tháng 7 2017

Ta có : S = 1 + 5+ 5+...+ 512 + 513 

=> S = 1 + 5 + (5+ 53 + 54 ) + (55 + 56 + 57) + ...... + (511 + 512 + 513

=> S = 6 + 52(1 + 5 + 25) + 55(1 + 5 + 25) + ..... + 511(1 + 5 + 25)

=> S = 6 + 52.31 + 55.31 + ..... + 511.31

=> S = 6 + (52.31 + 55.31 + ..... + 511.31)

=> S = 6 + 31(52 + 55 + ..... + 511)

Mà : 31(52 + 55 + ..... + 511) chia hết cho 31

Nên S = 6 + 31(52 + 55 + ..... + 511) chia 31 dư 6 

17 tháng 7 2017

5S= 5+52 +53 +....+ 513 + 514

4S=(5+52 +53 +....+ 513 + 514) - (1+ 5 + 52+53 +....+ 512 + 513 )

4S= 514 - 1 

S=  514 - 1 :4 =6103515625 -\(\frac{1}{4}\)= 6103515624.75

S: 31 = 6103515624.75 : 31

AH
Akai Haruma
Giáo viên
30 tháng 6 2024

Bài 1:

Theo đề ra ta có:

$a-2\vdots 3; a-3\vdots 5$

$a-2-2.3\vdots 3; a-3-5\vdots 5$

$\Rightarrow a-8\vdots 3; a-8\vdots 5$

$\Rightarrow a-8=BC(3,5)$

$\Rightarrow a-8\vdots 15$

$\Rightarrow a=15k+8$ với $k$ tự nhiên.

Mà $a$ chia 11 dư 6

$\Rightarrow a-6\vdots 11$

$\Rightarrow 15k+8-6\vdots 11$

$\Rightarrow 15k+2\vdots 11\Rightarrow 4k+2\vdots 11$

$\Rightarrow 4k+2-22\vdots 11\Rightarrow 4k-20\vdots 11$

$\Rightarrow 4(k-5)\vdots 11\Rightarrow k-5\vdots 11$

$\Rightarrow k=11m+5$

Vậy $a=15k+8=15(11m+5)+8=165m+83$ với $m$ tự nhiên.

Vì $a<500\Rightarrow 165m+83<500\Rightarrow m< 2,52$

$\Rightarrow m=0,1,2$

Nếu $m=0$ thì $a=165.0+83=83$

Nếu $m=1$ thì $a=165.1+83=248$

Nếu $m=2$ thì $a=165.2+83=413$

 

AH
Akai Haruma
Giáo viên
30 tháng 6 2024

Bài 2:

$a=BC(60,85,90)$
$\Rightarrow a\vdots BCNN(60,85,90)$

$\Rightarrow a\vdots 3060$

Mà $a<1000$ nên $a=0$

2 tháng 1 2017

c. S3 = 165 + 215 chia hết cho 33

ta thấy: 16^5=2^20
=> A=16^5 + 2^15 = 2^20 + 2^15
= 2^15.2^5 + 2^15
= 2^15(2^5+1)
=2^15.33
số này luôn chia hết cho 33

2 tháng 1 2017

b. S2 = 2 + 22 + 23 + 24 +........... + 2100 chia hết cho 31

= 2(1 + 2 + 22 + 23 + 24 ) + 26( 1 + 2 + 22 + 23 + 24 ) + ....+ (1 + 2 + 22 + 23 + 24 )296

= 2 x 31 + 26 x 31 + ..... + 296 x 31 = 31 x ( 2 + 26 + ..... + 296 )

=> 2 + 22 + 23 + 24 +........... + 2100 chia hết cho 31

21 tháng 2 2020

Câu 1 :

a) Ta có : S=5+52+53+...+52006

5S=52+53+54+...+52007

\(\Rightarrow\)5S-S=(52+53+54+...+52007)-(5+52+53+...+52006)

\(\Rightarrow\)4S=52007-5

\(\Rightarrow S=\frac{5^{2007}-5}{4}\)

b) Ta có : S=5+52+53+...+52006

=(5+53)+(52+54)+...+(52004+52006)

=5(1+52)+52(1+52)+...+52004(1+52)

=5.26+52.26+...+52004.26\(⋮\)26

Vậy S\(⋮\)26

21 tháng 2 2020

Câu 2 :

Gọi số cần tìm là : a. Điều kiện : a\(\in\)N*.

Vì a chia cho 3 dư 1, chia cho 4 dư 2, chia cho 5 dư 3 và chia cho 6 dư 4 nên ta có ; a-1\(⋮\)3 ; a-2\(⋮\)4 ; a-3\(⋮\)5 và a-4\(⋮\)6

\(\Rightarrow\)a-1+3\(⋮\)3 ; a-2+4\(⋮\)4 ; a-3+5\(⋮\)5 ; a-4+6\(⋮\)6

\(\Rightarrow\)a+2 chia hết cho cả 3, 4, 5 và 6

\(\Rightarrow\)a+2\(\in\)BC(3,4,5,6)

Ta có : 3=3

            4=22

            5=5

            6=2.3

\(\Rightarrow\)BCNN(3,4,5,6)=22.3.5=60

\(\Rightarrow\)BC(3,4,5,6)=B(60)={0;60;120;180;240;300;...}

\(\Rightarrow\)a\(\in\){-2;58;118;178;238;298;358;418;...}

Mà theo đề bài, a nhỏ nhất và chia hết cho 11

\(\Rightarrow\)a=418

Vậy số cần tìm là 418