Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(S=1+3+3^2+3^3+....+3^{30}\)
\(3S=\left(1+3+3^2+3^3+...+3^{30}\right).3\)
\(3S=3+3^2+3^3+...+3^{31}\)
\(3S-S=\left(3+3^2+3^3+...+3^{31}\right)\)\(-\left(1+3+3^2+3^3+...+3^{30}\right)\)
\(2S=3^{31}-1\)
\(S=\frac{3^{31}-1}{2}\)
=>S không phải là số chính phương
\(a,\\ Có.3A=3\left(1+3+3^2+...+3^{30}\right)=3+3^2+3^3+...+3^{31}\\ Mà.A=1+3+3^2+3^3+...+3^{30}\\ \Rightarrow2A=3^{31}-1\\ 2A\equiv3^{31}-1\left(Mod.10\right)\\ \equiv3^{4\cdot7+3}-1\\ \equiv1+27-1\equiv7\)
Phần gì không hiểu thì hỏi nhé
gợi ý nhé:
chia làm 10 cặp mỗi cặp 3 số tự nhiên liên tiếp
gọi 3 số tự nhiên liên tiếp là a,a+1,a+2
a^2+(a+1)^2+(a+2)^2
=a^2+a^2+2a+1+a^2+4a+4
=3a^2+6a+5
=3(a^2+2a+1)+2
ta thấy tổng trên chia 3 dư 2 nên tổng trên k phải là scp
áp dụng:
(1^2+2^2+3^2)+(4^2+5^2+6^2)+...+(28^2+29^2+30^2)
=(3k1+2)+(3k2+2)+...+(3k10+2)
[[k chính là a^2+2a+1]]
S:3 dư 2 => k là scp
A=1+3+3^2...+3^30 (1)
Nhan 2 ve voi 3 ta duoc :
3A=3+3^2+3^3+...+3^31 (2)
Lay (2)-(1) ta duoc :
2A=1+3^31
2A=1+...7
2A=...8
A=...8:2
A=...4
Vay A khong phai la so chinh phuong
**** nhe