Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(8-\frac{3}{2\cdot4}+\frac{3}{4\cdot6}+...+\frac{3}{98\cdot10}\)
\(=8-\frac{3}{2}\left[\frac{1}{2\cdot4}+\frac{1}{4\cdot6}+...+\frac{1}{98\cdot100}\right]\)
\(=8-\frac{3}{2}\left[\frac{1}{2}-\frac{1}{4}+\frac{1}{4}-\frac{1}{6}+...+\frac{1}{98}-\frac{1}{100}\right]\)
\(=8-\frac{3}{2}\left[\frac{1}{2}-\frac{1}{100}\right]=8-\frac{3}{2}\cdot\frac{49}{100}=8-\frac{147}{200}=\frac{1453}{200}>1\)
S=4+42+43+44+...+499
4S=42+43+44+...+499+4100
4S-S=4100-1
3S=4100-1
S=(4100-1):3 < 6.498
vậy S < 6.498
nhận xét :
\(\frac{1}{2^2}< \frac{1}{2.3}=\frac{1}{2}-\frac{1}{3}\)
\(\frac{1}{3^2}< \frac{1}{3.4}=\frac{1}{3}-\frac{1}{4}\)
.............
\(\frac{1}{100^2}=\frac{1}{100.101}=\frac{1}{100}-\frac{1}{101}\)
vậy
\(\frac{1}{2^2}+\frac{1}{3^2}+...+\frac{1}{100^2}< \frac{1}{2}-\frac{1}{101}=\frac{9}{202}< \frac{3}{4}\)
Ta có: \(\frac{1}{3^2}< \frac{1}{2.3};\frac{1}{4^2}< \frac{1}{3.4};.....;\frac{1}{100^2}< \frac{1}{99.100}\)
=>\(S=\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+...+\frac{1}{100^2}< \frac{1}{2^2}+\frac{1}{2.3}+\frac{1}{3.4}+....+\frac{1}{99.100}\)
=>\(S< \frac{1}{4}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+....+\frac{1}{99}-\frac{1}{100}\)
=>\(S< \frac{1}{4}+\frac{1}{2}-\frac{1}{100}=\frac{3}{4}-\frac{1}{100}< \frac{3}{4}\)
=>S<3/4(đpcm)
\(S=1+3^2+3^4+...+3^{100}\)
\(\Rightarrow9S=3^2+3^4+....+3^{102}\)
\(\Rightarrow9S-S=\left(3^2+....+3^{102}\right)-\left(1+....+3^{100}\right)\)
\(\Rightarrow8S=3^{102}-1=9^{51}-1>8^{51}:2=2^{152}\)
bạn ghi sai đề rồi . đáng là 1+3^1 trước chứ