Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1) S = 1 + 2 + 2^2 + ... + 2^99 ( có 100 số; 100 chia hết cho 4)
S = (1 + 2) + (2^2 + 2^3) + ... + (2^98 + 2^99)
S = 3 + 2^2.(1 + 2) + ... + 2^98.(1 + 2)
S = 3 + 2^2.3 + ... + 2^98.3
S = 3.(1 + 2^2 + ... + 2^98) chia hết cho 3 ( đpcm)
3) lm tươg tự câu 1, nhóm 4 số
3) Để thừa ra số 1 đầu tin, típ theo nhóm 3 số
KL: S chia 7 dư 1
Mình chỉ biết làm ý a thôi :)
S = 21 + 22 + 23 + ... + 299 + 2100
S = ( 21 + 22 ) + ... + ( 299 + 2100 )
S = 21( 1 + 2 ) + ... + 299 ( 1 + 2 )
S = 21 . 3 + ... + 299 . 3
S = 3( 21 + ... + 299 ) chia hết cho 3
\(S=2^0+2^1+2^2+...+2^{99}+2^{100}\)
\(=1+2+\left(2^2+2^3+2^4\right)+...+\left(2^{98}+2^{99}+2^{100}\right)\)
\(=3+2^2.\left(1+2+4\right)+...+2^{98}.\left(1+2+4\right)\)
\(=3+7.\left(2^2+2^5+...+2^{98}\right)\)chia 7 dư 3
\(S=2^0+2^1+2^2+...+2^{99}+2^{100}\)
\(S=\left(2^0+2^1+2^2\right)+\left(2^3+2^4+2^5\right)+....+\left(2^{98}+2^{99}+2^{100}\right)\)
\(S=\left(1+2+4\right)+2^3\left(1+2+4\right)+.....+2^{98}\left(1+2+4\right)\)
\(S=7+2^3\cdot7+....+2^{98}\cdot7\)
\(S=7\left(1+2^3+...+2^{98}\right)\)
=> S chia 7 dư 0 hay S chia hết cho 7
a) A= 50+ 51+ 52+....+ 599
suy ra A = 1+51+52+....+599
suy ra 5A = 5+52+53+....+599+5100
suy ra A =(5+52+53+....+5100)-(1+51+52+...+599)
Vậy A = 5100-1
MÌNH CHỈ LÀM ĐƯỢC CÂU A THUI ! XIN LỖI BẠN !!!
1) S = 1 + 2 + 22 + ... + 2100 (có 100 số; 100 chia hết cho 2)
S = (1 + 2) + (22 + 23) + ... + (299 + 2100)
S = 3 + 2.(1 + 2) + ... + 299.(1 + 2)
S = 3 + 2.3 + ... + 299.3
S = 3.(1 + 2 + ... + 299) chia hết cho 3 (đpcm)
2) Cách 1: là nhân S với 2 r` tìm ra S = 2100 - 1 và tìm ra c/s tận cùng của S là 5, chia hết cho 5
Cách 2: nhóm 4 số và lm như trên
C) Để thừa ra số 1 đầu tiên, nhóm 3 số típ theo lại, như thế (lm như câu 1)
KQ: S chia 7 dư 1
1)
Ta thấy 99 là số lẻ, 20y là số chẵn với mọi y
=> Để 6x + 99 = 20y thì 6x là số lẻ
=> x = 0
Thay x = 0 ta có 60 + 99 = 20y
=> 1 + 99 = 20y
=> 100 = 20y
=> y = 100 ; 20
=> y = 5
Vậy x = 0, y = 5
`Answer:`
2.
Ta có: \(M=1+3+3^2+3^3+3^4+...+3^{98}+3^{99}+3^{100}\)
\(=\left(1+3\right)+\left(3^2+3^3+3^4\right)+...+\left(3^{98}+3^{99}+3^{100}\right)\)
\(=4+3^2.\left(1+3+3^2\right)+...+3^{98}.\left(1+3+3^2\right)\)
\(=4+3^2.13+3^{98}.13\)
\(=4+13.\left(3^2+...+3^{98}\right)\)
Vậy `M` chia `13` dư `4`
Ta có: \(M=1+3+3^2+3^4+...+3^{99}+3^{100}\)
\(=1+\left(3+3^2+3^3+3^4\right)+\left(3^5+3^6+3^7+3^8\right)+...+\left(3^{97}+3^{98}+3^{99}+3^{100}\right)\)
\(=1+3.\left(1+3+3^2+3^3\right)+3^5.\left(1+3+3^2+3^3\right)+...+3^{97}.\left(1+3+3^2+3^3\right)\)
\(=1+3.40+3^5.40+...+3^{97}.40\)
\(=1+40.\left(3+3^5+...+3^{97}\right)\)
Mà ta thấy \(40.\left(3+3^5+...+3^{97}\right)⋮40\)
Vậy `M` chia `40` dư `1`
3,
\(A=2+2^2+2^3+...+2^{10}\)
\(A=\left(2+2^2\right)+\left(2^3+2^4\right)+...+\left(2^9+2^{10}\right)\)
\(A=2.\left(1+2\right)+2^3.\left(1+2\right)+...+2^9.\left(1+2\right)\)
\(A=2.3+2^3.3+...+2^9.3\)
\(A=\left(2+2^3+...+2^9\right).3⋮3\)
\(\Rightarrow A⋮3\)
gọi khoảng cách giữa 2 cây liên tiếp là a(m)
ta có 105 chia hết cho a,60 chia hết cho a và a lớn nhất
=>a là ƯCLN(105,60)
105=3.5.7
60=2^2.3.5
ƯCLN(105,60)=3.5=15
Vậy khoảng cách lớn nhất giữa hai cây liên tiếp là 15 m
chu vi của vườn là:
(105+60).2=330(m)
tổng số cây là:
330:15=22(cây)
vậy tổng số cây là 22 cây
a, S = 1 + 21+2+3+...+99= 1 + 24950
Vì 4950 chia hết cho 9 mà 1 chia 9 dư 1 => S chia 9 dư 1.
b,
S + 1 = 1 + 1 + 24950= 24951
Vì 2 = 2 => n-1 = 4951
n= 4951 + 1
n= 4952.
Đáp số : a, 1.
b, 4952.
mình để a là 7 mà
sao bạn là 9