Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(S=1+2+2^2+...+2^9\)
\(2S=2\left(1+2+2^2+...+2^{10}\right)\)
\(2S=2+2^2+2^3+...+2^9\)
\(2S-S=\left(2+2^2+2^3+...+2^{10}\right)-\left(1+2+2^2+...+2^9\right)\)
\(S=2^{10}-1=2^2.2^8-1=4.2^8-1<5.2^8\)
\(\Rightarrow S<5.2^8\)
Ta co :
\(S=1+2+2^2+2^3+...+2^9\)
\(S=2^{10}-1\)
\(5.2^8=\left(2.2+1\right)2^8=4.2^8+2^8=2^{10}+2^8\)
Vay \(S<5.2^8\)
Ta có ; \(S=1+2+2^2+.....+2^9\)
\(\Rightarrow2S=2+2^2+2^3+.....+2^{10}\)
\(\Rightarrow2S-S=2^{10}-1\)
\(\Rightarrow S=2^{10}-1=2^8.4-1< 2^8.5\)
Vậy S < P .
S=1+2+22+23+...+29
2S=(1+2+22+23+...+29).2
2S=2+22+23+...+29+210
2S-S=(2+22+23+...+210)-(1+2+22+23+...+29)
S=210-1
P=5.28=(1+4).28=1+22.28=1+210
Vì 210-1<210+1
=>S<P
S = 1+2+22+23+...+29
=> 2S = 2+22+23+24+...+210
=> 2S-S = 2+22+23+24+...+210 - ( 1+2+22+23+...+29 )
=> S = 1+210
Lại có 5.28 = 5/4.210 > S
=> 5.28>S
Ta thấy S có 10 só hạng
\(\Rightarrow S=1+2+2^2+...+2^9=\left(1+2^9\right).10:2=\left(1+2^9\right).5\)
Mà: \(1+2^9>2^8\Rightarrow S>5.2^8\)
Ta có: S=1+2+22+23+…+29
=>2S=2+22+23+…+210
=>2S-S=2+22+23+…+210-(1+2+22+23+…+29)
=>S=210-1=22.28-1=4.28-1<4.28<5.28
=>S<5.28
S=1+2+2^2+2^3+....+2^9
2S=2+2^2+2^3+.....+2^10
2S-S=2^10-1
=>S=2^10-1
=1024-1
=1023
5.2^8=5.256=1280
Vì 1023<1280=>S<5.2^8
1+2+22+23+24+.........+29
2S= 2+22+23+24+........+29+210
2S-S= ( 2+22+23+24+........+29+210)-(1+2+22+23+24+.........+29)
S= 210-1
Ta có: 5.28= (4+1).28
= 4.28+ 28
= 22.28+28
= 210+28
=> 210-1 < 210+28
Hay S < 5.28
các bạn giải bằng cách dễ hiểu nhất nhé
xin các bạn đó
^_^