Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
S=2+2^2+2^3+2^4+2^5+2^6+2^7+2^8
S=(2+2^2)+(2^3+2^4)+(2^5+2^6)+(2^7+2^8)
S=6+2^2(2+2^2)+2^4(2+2^2)+2^6(2+2^2)
S=6+2^2.6+2^4.6+2^6.6
S=6(1+2^2+2^4+2^6)=>S chia hết cho -6
S=2+22+23+24+25+26+27+28=(2+22)+22(2+22)+24(2+22)+26(2+22)
S=6+4x6+16x6+64x6
Vì 6 chia hết 6 nên 4x6 chia hết 6 ,16x6 chia hết 6, 64x6 chia hết 6
nên 6+4x6+16x6+64x6 chia hết 6
Vậy 2+22+23+24+25+26+27+28 chia hết cho 6
*)S=2+22+23+24+.....+28
Vì các số hạng của S chia hết chia hết cho 2
*) S=2+22+23+24+.....+28
=> S=(2+22)+(23+24)+.....+(27+28)
=> S=2(1+2)+23(1+2)+....+27(1+2)
=> S=2.3+23.3+.....+27.3
=> S=3(2+23+....+27)
=> S chia hết cho 3
Ta có 2 và 3 là 2 số nguyên tố cùng nhau => S chia hết cho 2.3=6
=> S chia hết cho -6 (đpcm)
Ta có ;
S = 1 + 2 + 2 2 + 2 3 + 2 4 + 2 5 + 2 6 + 2 7
= ( 1 + 2 ) + ( 2 2 + 2 3 ) + ( 2 4 + 2 5 ) + ( 2 6 + 2 7 )
= ( 1 + 2 ) + 2 2 ( 1 + 2 ) + 2 4 ( 1 + 2 ) + 2 6 ( 1 + 2 )
= 3 + 2 2 .3 + 2 4 .3 + 2 6 .3
= 3 . ( 1 + 2 2 + 2 4 + 2 6 ) chia hết cho 3 ( Vì 3 chia hết cho 3 )
A = 3 + 3 2 + 3 3 + ..... + 3 9 + 3 10
= ( 3 + 3 2 ) + ( 3 3 + 3 4 ) .... + ( 3 9 + 3 10 )
= 3 ( 1 + 3 ) + 3 3 . ( 1 + 3 ) + .... + 3 9 ( 1 + 3 )
= 3 . 4 + 3 3 . 4 + .... + 3 9 . 4
= 4 . ( 3 + 33 + ... + 3 9 ) chia hết cho 4 ( Do 4 chia hết cho 4 )
\(S=\left(1+2\right)+\left(2^2+2^3\right)+\left(2^4+2^5\right)+\left(2^6+2^7\right)\)
\(S=3+3\cdot2^2+3\cdot2^4+3\cdot2^6=3\left(1+2^2+2^4+2^6\right)⋮3\)
\(A=\left(3+3^2\right)+\left(3^3+3^4\right)+...+\left(3^9+3^{10}\right)\)
\(A=4\cdot3+4\cdot3^3+...+4\cdot3^9=4\cdot\left(3+3^3+...+3^9\right)⋮4\)
\(6+6^2+\cdot\cdot\cdot+6^{10}\)
\(=6\cdot\left(1+6\right)+6^3\cdot\left(1+6\right)+\cdot\cdot\cdot+6^9\cdot\left(1+6\right)\)
\(=6\cdot7+6^3\cdot7+\cdot\cdot\cdot+6^9\cdot7\)
\(=7\cdot\left(6+6^3+\cdot\cdot\cdot+6^9\right)⋮7\)
\(\Rightarrow6+6^2+\cdot\cdot\cdot\cdot+6^{10}⋮7\)
a, S=1+2^7+(2+2^2)+(2^3+2^4)+(2^5+2^6)
S=1+128+2*3+(2^3*1+2^3*2)+(2^5*1+2^5*2)
S=129+2*3+2^3*(1+2)+2^5*(1+2)
S=3*43+2*3+2^3*3+2^5*3
S=3*(43+2+2^3+2^5)chia hết cho 3 nên S chia hết cho 3
c) S = ( -2 ) + 4+ ( -6 ) + 8 + ... + ( -2002 ) + 2004
S = [ (-2)+4] + [ (-6) + 8 ] + ... + [ (-2002) + 2004 ]
S = 2 + 2 + 2 + ... + 2 ( 501 số hạng 2 )
S = 2*501
S = 1002
\(S=1+2+2^2+2^3+...+2^{11}\)
\(=\left(1+2\right)+2^2\left(1+2\right)+...+2^{10}\left(1+2\right)\)
\(=3+3\cdot2^2+3\cdot2^4+3\cdot2^6+3\cdot2^8+3\cdot2^{10}\)
\(=3\left(1+2^2+2^4+2^6+2^8+2^{10}\right)⋮3\)
S= (1+2)+22(1+2)+24(1+2)+26(1+2)+28(1+2)+210(1+2)
S=3(1+22+24+26+28+210)
suy ra S chia hết cho 3
S=(1+2)+(2^2+2^3)+(2^4+2^5)+(2^6+2^7)+(2^8+2^9)
=1.(1+2)+2^2.(1+2)+2^4.(1+2)+2^6.(1+2)+2^8.(1+2)
=1.3+2^2.3+2^4.3+2^6.3+2^8.3
=3.(1+2^2+2^4+2^6+2^8) chia hết cho 3
S=1+2+2^2+2^3+2^4+2^5+2^6+2^7
S= (1+2) + (2^2+2^3) + (2^4+2^5) + (2^6+2^7)
S=3 + 3.4 + 3.16 + 3.64
S=255
Vì 255 chia hết cho 3
=> S sẽ chia hết cho 3
Người lạ ơi bố thí cho tôi ^_^