Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\frac{1}{1+2+3+...+n}=\frac{1}{\frac{\left(1+n\right).n}{2}}=\frac{2}{\left(1+n\right).n}=2.\left(\frac{1}{n}-\frac{1}{n+1}\right)\)
áp dụng vào mà làm
Ta có công thức: \(1+2+3+....+n=\frac{n.\left(n+1\right)}{2}\)
Áp dụng vào tình tổng S:
\(S=1+\frac{1}{\frac{2.\left(2+1\right)}{2}}+\frac{1}{\frac{3.\left(3+1\right)}{2}}+.....+\frac{1}{\frac{n.\left(n+1\right)}{2}}\)
\(S=1+\frac{1}{\frac{2.3}{2}}+\frac{1}{\frac{3.4}{2}}+.....+\frac{1}{\frac{n.\left(n+1\right)}{2}}\)
\(S=1+\frac{2}{2.3}+\frac{2}{3.4}+......+\frac{2}{n\left(n+1\right)}\)
Đặt \(A=\frac{2}{2.3}+\frac{2}{3.4}+.....+\frac{2}{n\left(n+1\right)}\) ,ta có:
\(\frac{1}{2}A=\frac{1}{2.3}+\frac{1}{3.4}+....+\frac{1}{n\left(n+1\right)}\)
\(\frac{1}{2}A=\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+....+\frac{1}{n}-\frac{1}{n+1}=\frac{1}{2}-\frac{1}{n+1}=\frac{n+1-2}{2\left(n+1\right)}=\frac{n-1}{2n+2}\)
=>\(A=\frac{n-1}{2n+2}.2=\frac{2\left(n-1\right)}{2n+2}=\frac{2n-2}{2n+2}=\frac{2n+2-4}{2n+2}=1-\frac{4}{2n+2}<1\)
=>A < 1
Mà S=1+A
=>S < 2 (đpcm)
Với n chẵn thì \(S_n=\frac{-n}{2}\)nên \(S_{60}=-30\)
Với n lẻ thì \(S_n=\frac{n+1}{2}\)nên \(S_{35}=18\)
Vậy \(S_{35}+S_{60}=-12\)