Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
3n+2 - 2n+2 +3n - 2n = 3n . 32 - 2n. 22 +3n -2n
= 3n(32+1) - (2n.22 +2n)
=3n . 10 - 2n .5
=3n.10 - 2n-1 .2 .5
= 3n.10 - 2n-1 .10
= 10(3n - 2n-1)
vì 10 chia hết cho 10 nên 10(3n-2n-1) chia hết cho 10
=> 3n+2 - 2n+2 +3n -2n chia hết cho 10
Ai làm nhanh nhất mình sẽ **** xin cảm ơn các bạn mình đang cần gấp
\(S=\left(3+3^{3+3^3}\right)+.....+\left(3^{97}+3^{98}+3^{99}\right)\)
\(S=39.1+39.3^3+....+39.3^{96}=>S=39\left(1+3^3+3^6+.....+3^{96}\right)\)
Vậy S chia hết cho 39
Ta có: 31+32+33+…+399+3100
=(31+32)+(33+34)+…+(399+3100)
=3.(1+3)+33.(1+3)+…+399.(1+3)
=3.4+33.4+…+399.4
=(3+33+…+399).4 chia hết cho 4
=>31+32+33+…+399+3100 chia hết cho 4
Đặt \(A=3+3^2+3^3+...+3^{99}+3^{100}\)
\(=\left(3+3^2\right)+\left(3^3+3^4\right)+...+\left(3^{99}+3^{100}\right)\)
\(=3\left(1+3\right)+3^{ 3}\left(1+3\right)+...+3^{99}\left(1+3\right)\)
\(=\left(1+3\right)\left(3+3^3+...+3^{99}\right)\)
\(=4\left(3+3^3+...+3^{99}\right)\)
Vì 4 chia hết cho 4 nên \(4\left(3+3^3+...+3^{99}\right)\)
Vậy A chia hết cho 4
đặt A = 3 + 32 + 33 + 34 + ... + 399 + 3100
A = ( 3 + 32 ) + ( 33 + 34 ) + ... + ( 399 + 3100 )
A = 3 ( 1 + 3 ) + 33 ( 1 + 3 ) + ... + 399 ( 1 + 3 )
A = 3 . 4 + 33 . 4 + ... + 399 . 4
A = 4 . ( 3 + 33 + ... + 399 ) \(⋮\)4
S = 1 + 3 + 32 + ... + 399
= ( 1 + 3 ) + ( 32 + 33 ) + ... + ( 398 + 399 )
= 1.4 + 32(1+3) + ... + 398(1+3)
= 4.(1+32+...+398) chia hết cho 4
=> S = 1 + 31 + 32 + ........ + 399
= ( 1 + 31 ) + ( 32 + 33 ) + .......... + ( 398 + 399 )
= 4 + 32( 1 + 31 ) + ......... + 398( 1 + 31 )
= 4 . 32 . 4 + .......... + 398 . 4
= 4( 1 + ............ + 398 ) chia hết cho 4
=> ĐPCM