Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) \(32< 2^x< 128\)
=> \(2^5< 2^x< 2^7\)
=> x = 6
b) \(2^{x-1}+4\cdot2^x=9\cdot2^5\)
=> \(2^{x-1}+2^2\cdot2^x=9\cdot2^5\)
=> \(2^{x-1}+2^{2+x}=9\cdot2^5\)
=> 9.2x-1 = 9.25
=> 2x-1 = \(\frac{9\cdot2^5}{9}=2^5\)
=> x - 1 = 5 => x = 6
c) \(9\cdot27\le3^x\le243\)
=> \(243\le3^x\le243\)
=> x = 5
d) Giống câu b)
e) \(3^{x-1}+5\cdot3^{x-2}=216\)
=> 8.3x-2 = 216
=> 3x-2 = 27
=> 3x-2 = 33
=> x - 2 = 3 => x = 5
f) 27x-3 = 9x+3
=> 27x-3 = 9x+3
=> (33)x-3 = (32)x+3
=> 33x-9 = 32x + 6
=> không thỏa mãn x vì x là phân số mà theo đề bài là số nguyên
g) x2019 = x => x2019 - x = 0 => x(x2018 - 1) = 0 => x = 0 hoặc x = 1
a)
\(2^5< 2^x< 2^7\)
\(5< x< 7\)
\(x=6\)
b)
\(2^{x-1}+2^2\cdot2^x=9\cdot2^5\)
\(2^{x-1}+2^{2+x}=9\cdot2^5\)
\(2^{x-1}\left(1+2^3\right)=9\cdot2^5\)
\(2^{x-1}\cdot9=9\cdot2^5\)
\(2^{x-1}=2^5\)
\(x-1=5\)
\(x=6\)
Giải trâu:
Xét \(A-B=\dfrac{a^{2018}-b^{2018}}{a^{2018}+b^{2018}}-\dfrac{a^{2019}-b^{2019}}{a^{2019}+b^{2019}}\)
\(=\dfrac{\left(a^{2018}-b^{2018}\right)\left(a^{2019}+b^{2019}\right)-\left(a^{2018}+b^{2018}\right)\left(a^{2019}-b^{2019}\right)}{\left(a^{2018}+b^{2018}\right)\left(a^{2019}+b^{2019}\right)}\)
\(=\dfrac{a^{4037}+a^{2018}b^{2019}-a^{2019}b^{2018}-b^{4037}-a^{4037}+a^{2018}b^{2019}-a^{2019}b^{2018}+b^{4037}}{\left(a^{2018}+b^{2018}\right)\left(a^{2019}+b^{2019}\right)}\)
\(=\dfrac{2a^{2018}b^{2019}-2a^{2019}b^{2018}}{\left(a^{2018}+b^{2018}\right)\left(a^{2019}+b^{2019}\right)}=\dfrac{2a^{2018}b^{2018}\left(b-a\right)}{\left(a^{2018}+b^{2018}\right)\left(a^{2019}+b^{2019}\right)}\)
\(\Rightarrow\)Nếu \(a>b\Rightarrow b-a< 0\Rightarrow A-B< 0\Rightarrow A< B\)
Nếu \(a< b\Rightarrow b-a>0\Rightarrow A-B>0\Rightarrow A>B\)
Lời giải:
Ta có:
\(2018^{2018}(2019^{2019}+2019)=2018^{2018}.2019^{2019}+2018^{2018}.2019<2018^{2018}.2019^{2019}+2019^{2018}.2019 \)
\(< 2018^{2018}.2019^{2019}+2019^{2019}.2018\)
\(\Leftrightarrow 2018^{2018}(2019^{2019}+2019)< 2019^{2019}(2018^{2018}+2018)\)
\(\Rightarrow \frac{2018^{2018}}{2019^{2019}}< \frac{2018^{2018}+2018}{2019^{2019}+2019}\)
\(A=\frac{1}{1.2}+\frac{1}{2.3}+...+\frac{1}{2019.2020}\)
\(=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+...+\frac{1}{2019}-\frac{1}{2020}\)
\(=1-\frac{1}{2020}< 1\)
Vậy \(A< 1\left(đpcm\right)\)
\(B=\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+...+\frac{1}{50^2}< \frac{1}{4}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{49.50}\)
\(\Leftrightarrow B< \frac{1}{4}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{49}-\frac{1}{50}\)
\(\Leftrightarrow B< \frac{1}{4}+\frac{1}{2}-\frac{1}{50}\)
\(\Leftrightarrow B< \frac{1}{4}+\frac{1}{2}\)
\(\Leftrightarrow B< \frac{3}{4}\left(đpcm\right)\)
\(A=\left(26^{2018}+3^{2018}\right)^{2019}\)
\(B=\left(26^{2019}+3^{2019}\right)^{2018}\)
\(B=\left(26^{2018}.26+3.3^{2018}\right)^{2018}< \left(26^{2018}.26+3^{2018}.26\right)^{2018}\)
\(B< \left(26^{2018}+3^{2018}\right)^{2018}.26^{2018}< \left(26^{2018}+3^{2018}\right)^{2018}.\left(26^{2018}+3^{2018}\right)\)
\(\Rightarrow B< \left(26^{2018}+3^{2018}\right)^{2019}\Rightarrow B< A\)
Lời giải:
** Sửa lại đề:
$S=1.2^0+2.2^1+3.2^2+...+2019.2^{2018}$
$2S=1.2^1+2.2^2+3.2^3+...+2018.2^{2018}+2019.2^{2019}$
$\Rightarrow 2S-S=2019.2^{2019}-(2^0+2^1+2^2+2^3+...+2^{2018})$
$\Rightarrow S=2019.2^{2019}-(2^0+2^1+2^2+2^3+...+2^{2018})$
Xét:
$M=2^0+2^1+2^2+..+2^{2018}$
$2M=2^1+2^2+2^3+...+2^{2019}$
$\Rightarrow 2M-M=2^{2019}-2^0$
$\Rightarrow M=2^{2019}-1$
$S=2019.2^{2019}-M = 2019.2^{2019}-(2^{2019}-1)=2018.2^{2019}+1$
Xét hiệu:
$S-(2019.2^{2018}+2019)=2018.2^{2019}+1-2019.2^{2018}-2019$
$=2^{2018}(2018.2-2019)+1-2019$
$=2^{2018}.2017-2018>0$
$\Rightarrow S> 2019.2^{2018}+2019$