K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

27 tháng 9 2016

Mình nghĩ sửa 3 thành 1 sẽ hợp lí hơn

a)\(S=1+3^2+3^4+...+3^{2002}\)

=>\(3^2.S=3^2+3^4+3^6+...+3^{2004}\)

=>\(9S-S=\left(3^2+3^4+3^6+...+3^{2004}\right)-\left(1+3^2+3^4+...+3^{2002}\right)\)

=>\(8S=3^{2004}-1\)

=>\(S=\frac{3^{2004}-1}{8}\)
b)\(S=1+3^2+3^4+...+3^{2002}\)

=>\(S=\left(1+3^2+3^4\right)+...+\left(3^{1998}+3^{2000}+3^{2002}\right)\)

=>\(S=91+...+3^{1998}\left(1+3^2+3^4\right)\)

=>\(S=91+...+3^{1998}.91\)

=>\(S=91\left(1+...+3^{1998}\right)\)

=>\(S=7.13.\left(1+...+3^{1998}\right)\) chia hết cho 7 (đpcm)

27 tháng 9 2016

đpcm là gì

22 tháng 10 2021

a) Tổng S có 100 số hạng chia thành 25 nhóm , mỗi nhóm có 4 số hạng :

\(S=1-3+3^2-3^3+...+3^{98}-3^{99}\)

\(S=\left(1-3+3^2-3^3\right)+\left(3^4-3^5+3^6-3^7\right)+...+\left(3^{96}-3^{97}+3^{98}-3^{99}\right)\)

\(S=-20+3^4.\left(-20\right)+...+3^{96}\left(-20\right)⋮-20\)

b)\(S=1-3+3^2-3^3+...+3^{98}-3^{99}\)

\(\Leftrightarrow3S=3-3^2+3^3-3^4+...+3^{99}-3^{100}\)

Cộng từng vế của 2 đẳng thức ta có :

\(3S+S=\left(3+1\right)S=4S=\frac{1-3^{100}}{4}\)

Vì S là 1 số nguyên nên 1 - 3100 chia hết cho 4 hay 3100 -1 chia hết cho 4 => 3100 chia 4 dư 1

12 tháng 8 2018

5^6+5^7+5^8

=5^6.(1+5+5^2)

=5^6.31 chia hết cho 31

7^6+7^5-7^4

=7^4.(7^2+7-1)

=7^4.55 chia hết cho 11

12 tháng 8 2018

BÀI 2:

a)  \(5^6+5^7+5^8=5^6\left(1+5+5^2\right)=5^6.31\)      \(⋮\)\(31\)

b)  \(7^6+7^5-7^4=7^4.\left(7^2+7-1\right)=7^4.55\)\(⋮\)\(11\)

c)  \(2^3+2^4+2^5=2^3.\left(1+2+2^2\right)=2^3.7\)\(⋮\)\(7\)

d) mk chỉnh đề

 \(1+2+2^2+2^3+...+2^{59}\)

\(=\left(1+2\right)+\left(2^2+2^3\right)+...+\left(2^{58}+2^{59}\right)\)

\(=\left(1+2\right)+2^2\left(1+2\right)+...+2^{58}\left(1+2\right)\)

\(=\left(1+2\right)\left(1+2^2+...+2^{58}\right)\)

\(=3\left(1+2^2+...+2^{58}\right)\)\(⋮\)\(3\)

9 tháng 6 2016

3S=3(1+32+...+32002)

3S=3+33+...+32003

3S-S=(3+33+...+32003)-(1+32+...+32002)

2S=32003-1

S=(32003-1)/2

Ta có : 32S = 33 + 34 + 36 + .... + 32002

=> 8S = 32004  - 1 

=> S = \(\frac{3^{2004}-1}{8}\)

 Nhân S với 3^2 ta được 9S=3^2+3^4+....+3^2002+3^2004
=>9S-S=(3^2+3^4+....+3^2004)-(3^0+3^2+....+3^2002)
=>8S=3^2004-1
=>S=(3^2004-1)/8

Tick nhé 

22 tháng 9 2017

S = 2+ 22 + 23 + ........... + 2100

2S = \(2^2+2^3+2^4+.........+2^{101}\)

2S - S = \(\left(2^2+2^3+2^4+.......+2^{101}\right)-\left(2^1+2^2+2^3+.......+2^{100}\right)\)

\(2S-S=2^2+2^3+2^4+.......+2^{101}-2^1-2^2-2^3-.......-2^{100}\)

S = \(2^{101}-2^1\)

Mà 2101 chia hết cho 5 => S \(⋮\)5

22 tháng 9 2017

trong câu hỏi tương tự có đấy bạn

19 tháng 8 2019

a, \(M=1+6+6^2+6^3+...+6^{99}\)

\(M=6\cdot(1+6)+6^2(1+6)+6^3(1+6)+...+6^{99}(1+6)\)

\(M=6\cdot7+6^2\cdot7+6^3\cdot7+...+6^{99}\cdot7\)

\(M=7\cdot\left[6+6^2+6^3+...+6^{99}\right]⋮7(đpcm)\)

b, \(M=1+6+6^2+6^3+...+6^{99}\)

\(M=6\cdot\left[1+6+6^2+6^3\right]+...+6^{96}\left[1+6+6^2+6^3\right]\)

\(M=6\cdot\left[7+36+216\right]+...+6^{96}\left[7+36+216\right]\)

\(M=6\cdot259+...+6^{96}\cdot259\)

\(M=259\cdot\left[6+...+6^{96}\right]⋮259\)

Vậy \(M⋮259(đpcm)\)

25 tháng 7 2019

hello

\(a;A=1+3+3^2+...+3^{29}\)

        \(=\left(1+3\right)+3^2\left(1+3\right)+3^4\left(1+3\right)+...+3^{28}\left(1+3\right)\)

        \(=\left(1+3\right)\left(1+3^2+...+3^{28}\right)=4\left(1+3^2+...+3^{28}\right)⋮4\left(đpcm\right)\)

b;Xét \(3A=3+3^2+3^3+...+3^{30}\)

\(\Rightarrow3A-A=\left(3+3^2+3^3+...+3^{30}\right)-\left(1+3+3^2+...+3^{29}\right)\)

\(\Leftrightarrow2A=3^{30}-1\Rightarrow A=\frac{3^{30}-1}{2}\)

18 tháng 2 2018

Tương tự như câu của nguyễn thị hà uyên bên trên nhé