Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) S=(2+22)+22(2+22)+24(2+22)+.....+298(2+22)
S=(2+22)(1+22+24+....+298)
s=6(1+22+24+....+298)
Vi 6 chia het cho 3.Suyra S chia het cho 3
Moi cac ban xem tiep phan sau vao ngay mai
a. S=2+2^2+2^3+2^4+...+2^100
= 2.(1+2)+2^3.(1+2)+2^5.(1+2)+....+2^99(1+2)
=2.3+2^3.3+2^5.3+...+2^99.3
=3.(2+2^2+2^5+...+2^99)
=> 3 chia hết cho 3
b. S=2+2^2+2^3+2^4+...+2^100
= 2.(1+2+4+8)+2^5.(1+2+4+8)+2^9(1+2+4+8)+...+2^96.(1+2+4+8)
=2.15+2^5.15+2^9.15+...+2^96.15
=> S chia hết cho 15
b, Ta có
S= ( 2 + 22 ) + (23 +24 ) +..... + ( 2 999 + 2 1000 )
= 2. (2 +1 )+ 23 . ( 2+1) +... +2999. (2+1)
=2.3 +23.3+....+2999.3
= 3. ( 2 + 2 3 +...+ 2999)
Vì 3 chia hết cho 3 nên biểu thức trên chia hết cho 3
=> A chia hết cho 3
câu trên tương tự nhưng dễ hơn nên tự đi mà làm
dễ mà bạn. Chỉ cần nhóm 2 số đầu với nhau . Rồi cho số 2 ra ngoài
S=2+2^2+2^3+2^4+...+2^59+2^60
=(2+2^2+2^3+2^4)+...+(2^57+2^58+2^59+2^60)
=2(1+2+2^2+2^3)+...+2^57(1+2+2^2+2^3)
=(1+2+2^2+2^3)(2+...+2^57)
=15.(2+...+2^57) chia hết cho 15
\(S=5^1+5^2+5^3+5^4+...+5^{99}+5^{100}\)
\(S=\left(5^1+5^2\right)+\left(5^3+5^4\right)+...+\left(5^{99}+5^{100}\right)\)
\(S=30+5^2\cdot30+...+5^{98}\cdot30\)
\(S=30\cdot\left(1+5^2+...+5^{99}\right)⋮6\left(ĐPCM\right)\)
a) \(S=1+2+2^2+2^3+...+2^{299}\)
\(=\left(1+2\right)+\left(2^2+2^3\right)+...+\left(2^{298}+2^{299}\right)\)
\(=\left(1+2\right)+2^2\left(1+3\right)+...+2^{298}\left(1+2\right)\)
\(=3\left(1+2^2+...+2^{298}\right)⋮3\)
b) \(S=1+2+2^2+2^3+...+2^{299}\)
\(=\left(1+2+2^2\right)+\left(2^3+2^4+2^5\right)+...+\left(2^{297}+2^{298}+2^{299}\right)\)
\(=\left(1+2+2^2\right)+2^3\left(1+2+2^2\right)+...+2^{297}\left(1+2+2^2\right)\)
\(=7\left(1+2^3+...+2^{297}\right)⋮7\)
c) \(S=1+2+2^2+2^3+...+2^{299}\)
\(=\left(1+2+2^2+2^3\right)+\left(2^4+2^5+2^6+2^7\right)+...+\left(2^{296}+2^{297}+2^{298}+2^{299}\right)\)
\(=\left(1+2+2^2+2^3\right)+2^4\left(1+2+2^2+2^3\right)+...+2^{296}\left(1+2+2^2+2^3\right)\)
\(=15\left(1+2^4+...+2^{296}\right)⋮15\)
Câu hỏi tương tự có đấy