K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

14 tháng 9 2014

a) S=(2+22)+22(2+22)+24(2+22)+.....+298(2+22)

S=(2+22)(1+22+24+....+298)

s=6(1+22+24+....+298)

Vi 6 chia het cho 3.Suyra S chia het cho 3

Moi cac ban xem tiep phan sau vao ngay mai

18 tháng 12 2014

a. S=2+2^2+2^3+2^4+...+2^100

= 2.(1+2)+2^3.(1+2)+2^5.(1+2)+....+2^99(1+2)

=2.3+2^3.3+2^5.3+...+2^99.3

=3.(2+2^2+2^5+...+2^99)

=> 3 chia hết cho 3 

b. S=2+2^2+2^3+2^4+...+2^100

= 2.(1+2+4+8)+2^5.(1+2+4+8)+2^9(1+2+4+8)+...+2^96.(1+2+4+8)

=2.15+2^5.15+2^9.15+...+2^96.15

=> S chia hết cho 15 

 

14 tháng 12 2015

b, Ta có

S= ( 2 + 2) + (2+2) +..... + ( 2 999 + 2 1000 )

  = 2. (2 +1 )+ 2. ( 2+1) +... +2999. (2+1)

  =2.3 +23.3+....+2999.3

  = 3. ( 2 + 2 +...+ 2999)

Vì 3 chia hết cho 3 nên biểu thức trên chia hết cho 3

=> A chia hết cho 3

câu trên tương tự nhưng dễ hơn nên tự đi mà làm

14 tháng 12 2015

dễ mà bạn. Chỉ cần nhóm 2 số đầu với nhau . Rồi cho số 2 ra ngoài 

11 tháng 12 2015

chtt

**** cho tớ nhé

11 tháng 12 2015

S=2+2^2+2^3+2^4+...+2^59+2^60

=(2+2^2+2^3+2^4)+...+(2^57+2^58+2^59+2^60)

=2(1+2+2^2+2^3)+...+2^57(1+2+2^2+2^3)

=(1+2+2^2+2^3)(2+...+2^57)

=15.(2+...+2^57) chia hết cho 15

11 tháng 10 2018

\(S=1+2+2^2+2^3+...+2^{2015}\)

\(=\left(1+2+2^2+2^3\right)+...+\left(2^{2012}+2^{2013}+2^{2014}+2^{2015}\right)\)

\(=\left(1+2+2^2+2^3\right)+...+2^{2012}\left(1+2+2^2+2^3\right)\)

\(=1.15+...+2^{2012}.15=15\left(1+...+2^{2012}\right)⋮15^{\left(đpcm\right)}\)

16 tháng 10 2015

Có các số hạng của A\S chia hết cho 2

=> S chia hết cho 2

S = 2+23+25+.....+299

S = (2+23)+(25+27)+....+(297+299)

S = 1.(2+23) + 24(2+23) +....+ 296(2+23)

S = 1.10 + 24.10 +....+ 296.10

S = 10.(1+24+...+296) chia hết cho 10

KL: S chia hết cho 2 và 10 (Đpcm)

12 tháng 11 2018

LBDRA^bb

22 tháng 8 2018

\(S=5^1+5^2+5^3+5^4+...+5^{99}+5^{100}\)

\(S=\left(5^1+5^2\right)+\left(5^3+5^4\right)+...+\left(5^{99}+5^{100}\right)\)

\(S=30+5^2\cdot30+...+5^{98}\cdot30\)

\(S=30\cdot\left(1+5^2+...+5^{99}\right)⋮6\left(ĐPCM\right)\)

22 tháng 8 2018

\(S=5^1+5^2+5^3+5^4+...+5^{99}+5^{100}\)

\(S=\left(5^1+5^2\right)+\left(5^3+5^4\right)+...+ \left(5^{99}+5^{100}\right)\)

\(S=30+5^2\cdot30+...+5^{98}\cdot30\)

\(S=30\cdot\left(1+5^2+...+5^{99}\right)\text{ }⋮\text{ }6\left(\text{ĐPCM}\right)\)

DD
9 tháng 10 2021

a) \(S=1+2+2^2+2^3+...+2^{299}\)

\(=\left(1+2\right)+\left(2^2+2^3\right)+...+\left(2^{298}+2^{299}\right)\)

\(=\left(1+2\right)+2^2\left(1+3\right)+...+2^{298}\left(1+2\right)\)

\(=3\left(1+2^2+...+2^{298}\right)⋮3\)

b) \(S=1+2+2^2+2^3+...+2^{299}\)

\(=\left(1+2+2^2\right)+\left(2^3+2^4+2^5\right)+...+\left(2^{297}+2^{298}+2^{299}\right)\)

\(=\left(1+2+2^2\right)+2^3\left(1+2+2^2\right)+...+2^{297}\left(1+2+2^2\right)\)

\(=7\left(1+2^3+...+2^{297}\right)⋮7\)

c) \(S=1+2+2^2+2^3+...+2^{299}\)

\(=\left(1+2+2^2+2^3\right)+\left(2^4+2^5+2^6+2^7\right)+...+\left(2^{296}+2^{297}+2^{298}+2^{299}\right)\)

\(=\left(1+2+2^2+2^3\right)+2^4\left(1+2+2^2+2^3\right)+...+2^{296}\left(1+2+2^2+2^3\right)\)

\(=15\left(1+2^4+...+2^{296}\right)⋮15\)