Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
S = 1 + 2 + 22 + 23 + ... + 2100
2S = 2 . ( 1 + 2 + 22 + 23 + ... + 2100)
2S = 2 + 22 + 23 + 24 + ... + 2101
2S - S = ( 2 + 22 + 23 + 24 + ... + 2101 ) - ( 1 + 2 + 22 + 23 + ... + 2100 )
1S = 2101 - 1
S = 2101 - 1
Vậy S = 2101 - 1
Học tốt!!!
S = \(2+2^2+2^3+...+2^{100}\)
2S = \(2^2+2^3+...+2^{101}\)
2S - S = \(2^{101}-1\)
S = \(2^{101}-1\)
Vì \(101\) chia \(4\) dư \(1\) có dạng \(4k+1\) nên \(2^{101}\)có tận cùng là \(2\) . Mà S = \(2^{101}-1\)nên S có tận cùng là \(1\)
S = \(2+2^2+2^3+...+2^{100}\)
S = \(\left(2+2^2+2^3+2^4\right)+\left(2^5+2^6+2^7+2^8\right)+...+\left(2^{97}+2^{98}+2^{99}+2^{100}\right)\)
S = \(2\left(1+2+2^2+2^3\right)+2^5\left(1+2+2^2+2^3\right)+...+2^{97}\left(1+2+2^2+2^3\right)\)
S = \(3.5.\left(2+2^5+...+2^{97}\right)\)chia hết cho \(3\) và\(5\)
a)\(S=2^1+2^2+...+2^{100}\)
\(=\left(2^1+2^2+2^3+2^4\right)+...+\left(2^{97}+2^{98}+2^{99}+2^{100}\right)\)
\(=2^1\left(1+2+2^2+2^3\right)+...+2^{97}\left(1+2+2^2+2^3\right)\)
\(=2^1\cdot15+...+2^{97}\cdot15\)
\(=15\cdot\left(2^1+...+2^{97}\right)⋮15\)
c)\(S=2^1+2^2+...+2^{100}\)
\(2S=2\left(2^1+2^2+...+2^{100}\right)\)
\(2S=2^2+2^3+...+2^{101}\)
\(2S-S=\left(2^2+2^3+...+2^{101}\right)-\left(2+2^2+...+2^{100}\right)\)
\(S=2^{101}-2\)
S=2+22+23+....+2100
2.S=2+(22+23+...+299+2100)
2.S=22+23+24+...+2100+2101
-S=2+22+23+24+...+2100
2.S-S=2101-2
S=2100
Lưu Ý:Những chữ số mình viết thẳng hàng hay như thế nào thì bạn trình bày y như thế mới đúng ,kể cả gạch dài nha!
S=2+22+23+...+2100
S=(2+22+23+24)+...+(297+298+299+2100)
S=2x(1+2+22+23)+...+297x(1+2+22+23)
S=2x15+...+297x15
S=15x(2+...+297)
Vậy S\(⋮\)15
S=2+22+23+...+2100
=>2S=22+23+...+2101
=>S=2S-S=(22+23+...+2101)-(2+22+23+...+2100)
=>S=2101-2=225x4-2=...6-2=...4
Vậy chữ số tận cùng của S là 4
3S=9+3+32+33+...+399
3S-S=(9+3+32+...+399)-(3+32+33+...+3100)
3 có tận cùng là 3, 3^2 là 9, 3^3 là 7, 3^4 là 1, 3^5 là 3,....
Cú tương tự như vậu thì ta có tổng các tận cùng là: (3+9+7+1)*100:4=500
Vậy tận cùng là 0
CHÚC BẠN HỌC TỐT
ta có : s=2^1 + 2^2 + 2^3 +...+ 2^100
2S=2(2^1 + 2^2 + 2^3 +...+ 2^100)
= 2^2 + 2^3 +...+2^101
=> S=2S-S=(2^2+2^3+....+2^101)-(2^1 +2^2 +...+ 2^100)
= 2^101-2